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Abstract

The time—frequency—scale features of high-resolution rainfall are investigated in an effort to gain
more insight into the rainfall-generating mechanism. In particular, we look for the existence of
persistent and short-lived structures and their associated frequencies and time (length) scales, as
well as the energy they carry. We try to achieve this objective via the wavelet packet representation.
The best representation for a signal from the point of view of minimum entropy (i.e. maximum
information in a few coefficients) is obtained, and, in the process, we define two measures: (1) best
basis spectrum, which is analogous to the well-known Fourier spectrum; (2) frequency persistence
spectrum, a new measure, which in essence gives an idea of what scale has been chosen to best
represent a particular frequency; thus the localization of that frequency in time, whether persistent or
short lived, is known. We discuss the implications of our analysis in separating stratiform and
convective components of rain and in gaining insight into the rainfall energy cascading mechanism
for the purpose of model building.

1. Introduction

Rainfall, being the result of complex atmospheric phenomena, possesses a complicated
temporal and spatial structure. A wide range of frequency—content features and extreme
variability over time intervals from a few seconds to years make rainfall an intriguing and
challenging process to study. The temporal structure of rainfall at a point has been the
subject of intense study over the past two decades.

Markovian-type structures for hourly and daily rainfall formed the core of early models
used to explain rainfall’s extreme variability (e.g. Gabriel and Neumann, 1962). The
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structure and the parameters of these models depended heavily on the time scale chosen
for representing the rainfall process. This limitation led to the formulation of continuous-
time conceptual rainfall models, which would be applicable over several time scales (e.g.
see Waymire et al., 1984). The hope was that this continuous-time rainfall para-
meterization would shed light on the underlying rainfall-generating mechanism. However,
although these were valid simulation models, they fell short in providing a good under-
standing of the underlying structure of the rainfall process. A major drawback was that
there were too many parameters embedded in the model structure, resulting in non-unique-
ness and non-identifiability problems when the models were fitted to rainfall observations
at different scales (e.g. see Foufoula-Georgiou and Guttorp, 1987).

The fact that rainfall exhibits considerable variability over scales of the order of seconds
makes it all the more important and exciting to study the rainfall phenomenon at such fine
scales. However, lack of data has made impossible such fine-scale studies until recently,
when some high-resolution data have become available.

A recent analysis of high-resolution temporal data by Olsson et al. (1993) suggested that
rainfall intensities show scaling. Olsson et al. analyzed six 1 min rainfall data sets (which
spanned 2 years) to obtain scale-invariant properties of temporal rainfall. They claimed
that their results, obtained by the box counting method, indicate simple scaling with three
different scaling exponents over three different ranges of scales. The two breaks in scaling
correspond, as expected, to the storm duration and inter-arrival time of the storms.

Spectral analysis was performed by Georgakakos et al. (1994) on seven high-resolution
temporal data (5 s intervals) collected at the lowa Institute of Hydraulic Research (ITHR).
These workers claimed that scaling exists over short time scales (up to a few tens of
seconds) and a break in scaling occurs towards larger time scales. They also claimed
that “for a considerably larger sample of such long storms, ... it is probable that scale
invariance holds in the high-frequency range, if at all’. Again, they mentioned this with an
element of caution, as in the high-frequency range, the properties of the sensor measure-
ment error and the properties of the process under consideration become indistinguishable
and what needs to be hoped for is that the scale invariance is in fact a true feature of the
phenomenon (rainfall in our case) and not of the measurement process. Georgakakos et al.
also studied the behavior of the exceedance probabilities, and reported an intermittency
parameter y (which is a measure of the linearity in decay of the tail of the exceedance
probability distribution (log—log plot) of the fluctuations of the process under study) for
four of the rainfall data sets, in the range of 1.7-2.9.

This paper deals with an investigation of time—frequency—scale features of high-reso-
lution temporal rainfall. In particular, we look for the existence of persistent and short-
lived structures and their associated frequencies and time (length) scales. Although it is not
clear at this time what the typical ‘objects’ or ‘elementary structures’ that compose a
rainfall field are, recent evidence of scaling, energy cascading and similarity to fully
developed turbulence, and earlier observations about the existence of hierarchical struc-
tures in rainfall (see, e.g. Lovejoy and Schertzer, 1990; Gupta and Waymire, 1990; Kumar
and Foufoula-Georgiou, 1993a, b), point to the presence of an organized structure that
needs to be localized in both time (space) and frequency, to yield meaningful information.
For instance, the cascade models in turbulence, which have recently been used for rainfall
modeling, assume that wavenumber octaves are the elementary objects in homogeneous



V. Venugopal/Journal of Hydrology 187 (1996) 3—-27 5

turbulence and that their interactions consist of changing energy with neighboring octaves.
More recent evidence (e.g. see Farge et al., 1992; Wickerhauser et al., 1994) suggests that
cascading of energy in turbulent flows takes place only locally within coherent structures,
and that only a limited active portion of the vorticity field, related to coherent structures, is
responsible for the turbulent cascades.

A systematic approach to determine what kind of ‘objects’ exist in a field is to find an
appropriate segmentation of energy density in the phase-space (energy as a function of
time, frequency and scale) and to define phase-space ‘atoms’, among which energy or any
dynamically relevant quantity is distributed and exchanged by the flow dynamics of the
rainfall fields. It is worth stressing here again the issue of extreme variability of rainfall, in
the sense that rainfall exhibits a high degree of intermittency, and thus arises the need for
studying the time-localization of such a behaviour. This is the scope of this research, and
the tool that has been chosen for this analysis is wavelet packets. Before we delve
into the merits of a wavelet packet representation for temporal rainfall analysis, we define
time—frequency tiling and discuss the underlying idea of a time—frequency—scale
representation.

The time—frequency plane is a plane defined by time which spans the signal’s time
domain, or part of it as necessary, and frequency which ranges from zero to the Nyquist
frequency (i.e. 1/28, where & is the sampling interval). The idea of a time—frequency
analysis is to ‘tile’ this plane (also termed phase-space) with rectangles and assign to
each rectangle a magnitude representing the energy of the signal in the time—frequency
interval spanned by the rectangle. The way the tiling of the plane is done depends on the
basis chosen to represent the signal. Let us consider a rectangle centered around the point
(tewo) as shown in Fig. 1. The width of the rectangle in each direction represents the
uncertainty with which the frequency wg or time ¢y can be resolved. Heisenberg’s uncer-
tainty principle dictates that ¢, and o, the uncertainties in frequency and time, cannot be
simultaneously made arbitrarily small. Thus, if the plane were to be tiled with thin tall
boxes, we would have a very good time localization and no frequency localization. This is
the case with a standard basis, where the signal is represented as a superposition of Dirac
deltas. At the other extreme, if we decide to tile the plane with wide and short boxes, this is

Fig. 1. Time—frequency tiling.
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equivalent to a Fourier representation, wherein there is optimal frequency localization and
no time localization. The tiling of the time—frequency plane is dependent on what infor-
mation one needs to extract and also on a priori knowledge of the signal. To characterize a
signal by being able to associate various frequency bands with different time intervals is
called time—frequency analysis (tiling/localization). Now that we have seen what time—
frequency analysis is, we try to compare the advantages and disadvantages of three bases
which have proved to be useful in their own right.

As is well known, Fourier transforms provide no time localization of the frequencies
present in the signal (sinusoids have infinite support in time). However, using wavelet
representations, one can obtain good time localization owing to the fact that wavelets are
compactly supported. Despite their ability to provide ‘good’ time—frequency localization,
in terms of capturing optimal time—frequency features of the process under consideration,
wavelet transforms (and, naturally, Fourier representations too) suffer from an inherent
drawback: the basis is decided beforehand (once the wavelet is chosen) and hence is not a
data-adaptive basis. Also, in wavelet transforms, every scale is spanned by a one-period
wave, i.e. scale = (frequency)™, when, in fact, a process under study might contain
persistent structures, i.e. structures which span a length scale greater than the period of
the waves best describing the frequency content of this structure. This drawback is over-
come by wavelet packets, which encompass a family of orthonormal bases, from which a
data-adaptive basis can be chosen by minimizing an objective function such as entropy
(the basis so obtained is given the name best basis). In fact, in the wavelet packet case,
scale # (frequency), i.e. every scale is spanned by multiple period waves (from one-
period wave to Nyquist-period waves). The partition of the time—frequency plane by the
wavelet packet best basis provides information on how much energy is present in a
frequency band and over scales that best represent that frequency band. Wavelet packets
have been successfully applied in a variety of fields, notably: (1) compression of data and
identification of coherent structures in two-dimensional turbulent flows (Farge et al.,
1992): (2) classifying and characterizing signals, and, in particular, extracting geological
information from acoustic waveforms (Saito, 1994); (3) time—frequency analysis (in
particular, presence of persistent structures) of temporal rainfall (Venugopal, 1995); (4)
very recently, identification of coherent structures in temporal rainfall (Kumar, 1996).

This paper is arranged as follows. Section 2 presents a brief summary of the theory
behind wavelets and wavelet packets. We then define two measures to interpret the time—
frequency plots. Section 3 presents the results of our investigation of the time—frequency
characteristics of high-resolution temporal rainfall when represented using the wavelet
packet best basis. Finally, Section 4 presents conclusions and directions for future
research.

2. An overview of wavelets and wavelet packets

Families of functions of the form

]
a

o ) a>0, bER (1)
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generated from one function y by translations and dilations, are called wavelets.  in Eq.
(1) is called the ‘mother wavelet’, and a and b are the dilation (scaling) and translation
(location) parameters, respectively. The factor \/—}—’ is a normalization factor chosen to
ensure that the L norm of the wavelet is unity. ‘

The continuous wavelet transform (CWT) of a function f is defined as

Wefta.b)=lal”" [ 2 )ar @

The mother wavelet is chosen to have the following properties: (1) compact support, to
facilitate time localization; (2) zero mean, to permit reconstruction.

The discretization of the scale parameter a and the location parameter b leads to the
discrete wavelet transform. If the discretization is chosen as a = ag and b = nbgag, then the
discrete wavelet transform is given as

DW,f(m,n)= lagl ~™/? Jf(t)\//(ao""t—nbg)dt 3

For ag = 2, by = 1, it can be shown that an orthonormal family of functions can be
constructed (Daubechies, 1992) and the wavelet representation can be seen in a multi-
resolution framework by introducing a new function called the scaling function, denoted
by ¢(¢) (for more details see Mallat (1989a,b)).

From a filtering point of view, the convolution of the signal (function) with the scaling
function can be seen as a low-pass filtering and convolution with the wavelet can be seen
as a high-pass filtering (the latter is evident from the fact that wavelet is a band-pass filter,
as @(O) = 0). Towards this end, the wavelet decomposition can be seen as a repeated
convolution of the low-pass output with two sets of coefficients {c,} and {d,}, represent-
ing convolution with the scaling function and the wavelet, respectively. From a time—
frequency point of view, each stage of the decomposition can be visualized as an improve-
ment of frequency resolution (low-frequency bands) in the frequency domain (direction)
and a corresponding loss of time resolution (owing to Heisenberg’s uncertainty principle),
and is depicted in Fig. 2.

In the wavelet decomposition case, only the low-frequency bands are decomposed. We
go a step further in obtaining a more generic decomposition (representation) by decom-
posing the high-frequency bands also. The interesting aspect is that, by using a combina-
tion of {c,} and {d,} to produce two-scale relations with y, the wavelet spaces, W,,, can be
further decomposed orthogonally. The sequence of functions thus obtained are called
‘wavelet packets’. A wavelet packet is defined as a square integrable modulated wave-
form, well localized in both position and frequency (Wickerhauser, 1991). The ensuing
representation has come to be known as the wavelet packet representation. An informative
picture is a tree of the wavelet packet coefficients. For instance, the computation of such a
tree for a signal with eight points is shown in Fig. 3 (Wickerhauser, 1991). Each row is
obtained from the row immediately above it by operations involving {c,} and {d,}, and is
shown in the figure as ap;lying the filters C and D repeatedly, which for a Haar repre-

i ={ L 1 =41 _ 1
sentation are C = { 57 and D= { 7 Ji}'
A subset of N coefficients which correspond to an orthonormal basis could be selected,
and each choice gives a particular basis. The important thing to be noticed here is that a
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Fig. 2. Various stages of partitioning of the time—frequency plane in a wavelet decomposition.
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Fig. 3. A rectangle of wavelet packet coefficients (adapted from Wickerhauser (1991)).
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the frequency axis is partitioned in a
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{ sds0 | ddsO

1

do dl d2 d3

Fig. 4. A few combinations yielding orthonormal bases (adapted from Wickerhauser (1991)).

wavelet basis is just one of the ways of choosing this subset. Choosing elements from a
single level is analogous to a short-time Fourier transform. The last-level selection results
in a basis analogous to the Fourier basis, and the zero-level selection is similar to the
standard basis (superposition of Dirac deltas). Thus, in summary, all three bases discussed
above can be obtained from a wavelet packet tree. A few possibilities including those
mentioned above are shown in Fig. 4.

Thus we have a huge library of orthonormal bases, each capable of representing a signal
in its own right. We try to extract a basis which is the best in terms of providing a good
contrast between low and high energies. A good choice for an objective function (also
called the cost function) is entropy, as entropy = - information. The Shannon—Weaver
entropy of a sequence x = {x;} is defined as H(x)= - 3 p;log p; if p; # 0 and H(x) =0 if
p; = 0, where p; = (Ix;1%/Ildll*). A known aspect of this cost function is that exp H(x) is
proportional to the number of coefficients needed to represent the function to a fixed mean
square error. The basis so obtained by minimizing entropy is given the name best basis
(Wickerhauser, 1991).

The rectangles in the time—frequency plane defined by k27 =< ¢ < (k + 1)27 and n2’ <
@ < (n + 1)2 are associated with the wavelet packet 2/%w (2t - k), where k corresponds to
position, n to frequency and j to scale. In words, position refers to the center of the basis
functions, scale refers to the width of the support of the basis functions, and frequency
refers to the number of oscillations over this support of the basis functions (or equivalently
the center of the Fourier transform of the basis function). The best basis of wavelet packets
tries to maximize the energy captured by each rectangle. This ensures that when the signal
is expanded in the best basis all or most of its energy is captured with the fewest number of
basis elements (or equivalently coefficients).
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To sum up, wavelet packets provide a much more flexible and data-adaptive decom-
position of a signal and are preferable for the following reasons (Meyer, 1993): (1)
Daubechies’ orthogonal wavelets are a special case of wavelet packets; (2) wavelet
packets are organized naturally into collections and each collection is an orthonormal
basis for L%(R); thus, one can compare the advantages and disadvantages of the various
possible decompositions, based on a chosen objective function, and represent the signal in
an optimal way. In addition, as observed above, most of the energy can be captured by very
few coefficients by a judicious choice of the objective function.

2.1. Measures to interpret the time—frequency plots

2.1.1. Best basis spectrum

The time—frequency—energy plots of the best basis include information about scales,
too. As mentioned above, it is important to note that there is a fundamental difference in
the wavelet transform and the wavelet packet transform domain in terms of the way one
looks at the entity scale. In the former case, scale = (frequency)™ i.e. every scale is
spanned by a one-period wave. In the latter case, scale # (frequency)™, i.e. every scale
(support of the analysis window) is spanned by multiple period waves (one-period wave to
Nyquist-period waves). Thus the partition of the time—frequency plane by the wavelet
packet best basis (WPBB) gives us information on how much energy is present in a
frequency band (i.e. the sum of the squares of the best basis coefficients associated with
that frequency band) and over length scales (in time) that best represent that frequency
band. Indeed, the tiling across a particular frequency band, i.e. the size of the Heisenberg
rectangles, directly reflects on the scale to which the decomposition has been done. To aid
in the interpretation of the time—frequency—energy plots, we reduced the plots to two one-
dimensional plots. The first plot (energy vs. frequency) captures the energy encompassed
in various frequency bands (analogous to the Fourier spectrum), and is what we define as
the best basis spectrum (referred to below as the BBS).

The BBS is computed in the same way as the Fourier or the discrete wavelet spectrum,
the only difference being that, in the best basis scenario, we have frequency bands which
have been selected in a data-adaptive way, i.e. the distribution of energy into different
frequency bands is done in an adaptive fashion, unlike in the Fourier or the discrete
wavelet transform domain. The BBS cannot by itself describe completely the time—
frequency—energy plots, thus calling for the definition of another measure that can
complement the information provided by the BBS.

2.1.2. Frequency persistence spectrum

Wavelet packets can choose to characterize a frequency with a persistent amplitude (and
also phase) by a tiling (Heisenberg rectangle) that is elongated in the time domain (equiva-
lently good localization in the frequency domain), such that we have multiple periods over
a particular length scale (note that this is in contrast to the wavelet transform, where we
have one period per length scale). To quantitatively characterize such a property of the
wavelet packets, we introduce a measure, 2" x f, which is the number of periods
corresponding to the frequency f over a length scale (length of the Heisenberg rectangle
in time) which is equal to 2'**! (level here means the level of decomposition, i.c. the zeroth
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level corresponds to the signal itself and the last level corresponds to a Fourier-like
representation of the signal). Such a measure directly reflects the persistence (length
scale) of the frequency fin the phenomenon. Hence we call the plot of (2" x frequency)
vs. frequency as the frequency persistence spectrum (FPS). The quantity (2 x fre-
quency) remains a constant with frequency for a wavelet basis. This constant could be
one or two, depending on the representative frequency chosen for the frequency band
(lower or upper end) as elaborated below. In Fig. 2, different stages of a wavelet decom-
position are shown: at Stage 3, the frequency bands (normalized by the Nyquist frequency,
i.e. wo) are [1/8,1/4], [1/4,1/2] and [1/2,1] and the associated levels of decomposition are
three, two and one, respectively. If one were to choose the lower end of each frequency
band as the representative frequency, i.e. 1/8, 1/4 and 1/2, then the FPS would be 23 x (1/8),
22 x (1/4) and 2" x (1/2), respectively, and thus the constant is unity. On the other hand, if
we were to take the upper end as the representative frequency, then the associated FPS
would be 2° x (1/4), 2% x (1/2) and 2" x (1), and hence the constant is two. For our analysis,
we chose the upper end as the representative frequency. For the rest of the paper, when we
refer to frequency in the FPS or BBS, it is a normalized (by Nyquist frequency) frequency.

Thus, the FPS of a signal can give a qualitative and also a quantitative idea of how
different the best basis for the signal is from the wavelet basis. The quantitative idea comes
from the fact that the FPS gives us the level (or equivalently scale) to which the decom-
position has been carried out to localize a particular frequency. In fact, the level can be
computed as

level =log,/ 4

where 7 is the intercept of the line L = 2" on the (2" x frequency) axis in the FPS
(ordinate positioned at abscissa of unity in a log—log plot). For instance, let us consider
Fig. 5, in which the FPS and BBS for a signal have been shown in a log—log domain. The
horizontal broken line in the FPS at (2" x frequency) = 2 (as mentioned above) corre-
sponds to the wavelet basis. Each broken line represents one level of decomposition (only
a few levels are shown in the figure). It is important to note that each frequency has a
unique level of decomposition associated with it (this follows directly from the fact that we
are dealing with a basis). Furthermore, it is worth mentioning that two different frequency
bands could have the same level of decomposition, which would not be possible with a
wavelet basis. From that figure, for instance, if we were to take a frequency in the high-
frequency region (frequency between 10° and 107"), the value of (2'°* x frequency) for the
best basis is higher than that for the wavelet basis. This means that the level to which the
decomposition has been done is greater in the best basis, implying a better localization of
that frequency (correspondingly, an elongated rectangle in the time direction) in the best
basis framework. In other words, the best basis chose to represent that particular frequency
by multiple period waves over a length scale = 2'**?', which is not possible with the wavelet
basis where a one-period wave is used to represent the frequency over the length scale
mentioned above. This feature of the best basis is important when one wishes to study the
presence of persistent high-frequency (amplitude and phase remain the same for a time
period longer than the period of the oscillation) features in a phenomenon. On the other
hand, if we were to consider a frequency in the low-frequency region (frequency between
10~ and 107*), the quantity (2! x frequency) is same in the best basis as in the wavelet
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Fig. 5. Schematic representation of the frequency persistence spectrum (FPS—top) and best basis spectrum
(BBS—bottom) for a signal, on a log-log scale. The broken lines correspond to levels of decomposition and
can be computed using Eq. (4). The horizontal broken line corresponds to the FPS of a wavelet basis.
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Fig. 6. Daubechies wavelet with 10 vanishing moments (adapted from Daubechies, 1992, p. 199).
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basis, which indicates that the best basis chose to decompose a low frequency similar to
the wavelet basis.

In summary, the two measures that we defined above are complementary and are both
needed to fully characterize the time—frequency—energy plots, i.e. each of these measures
alone is not sufficient. Having seen these two measures to interpret time—frequency—
energy plots, we turn our attention to the analysis of high-resolution temporal rainfall.
The wavelet that was chosen for reporting the results of the analysis is one of the
Daubechies’ wavelets, D20, and is shown in Fig. 6. This wavelet has ten vanishing
moments and thus is very smooth. This property, to start with, was thought to be useful
for a process such as rainfall for the reason that rainfall exhibits considerable variability at
all scales. However, the analysis with other wavelets (less smooth) yielded results that are
not very different from each other. This naturally indicates the robustness of the technique,
owing to weak dependence of the conclusions and results on the mother wavelet.

3. Analysis of temporal rainfall
3.1. Data description

The high-resolution temporal rainfall data that we have considered for analysis were
collected at the Iowa Institute of Hydraulic Research (ITHR) over a period of 4 years (1989—
1992), with specially calibrated instrumentation that allows high-resolution sampling.
Further details about the instrumentation and other auxiliary data, such as wind speed,
pressure, etc., collected at the same site have been given by Georgakakos et al. (1994).

We have data for seven storms that occurred during the period from May 1990 to April
1991. It is noted that the sampling interval of all the storms is 5 s, except for the storm on 2
December, which has a 10 s sampling interval. The maximum rainfall rates range from 10
to 120 mm h'l, the average rain rates range from 0.38 to 3.9 mm h'l, and the coefficients of
variation range from 0.75 to 2. The rainfall time series are shown in Figs 7-10.

For future reference, the following notation will be used:

Rainl: Storm on 2 December 1990 . - Duration 26,9 h
Rain2: Storm on 1 November 1990 (B)  Duration 11.7 h
Rain3: Storm on 30 November 1990 - Duration 12.2 h
Raind: Storm on 3 October 1990 Duration 9.8 h
Rain5: Storm on 1 November 1990 (A) Duration 9.3 h
Rain6: Storm on 3 May 1990 Duration 9.3 h
Rain7: Storm on 12 April 1991 Duration 2.9 h

The above notation has been chosen so as to remain consistent with the names of the
events at the ftp site (which is used world wide). The original notation was made in the
order of decreasing signal length. The two rainfall events that occurred on 1 November
1990 were labeled A and B in chronological order.

3.2. Time—frequency—scale analysis

Before we proceed with the discussion of the results, we briefly mention a few
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Fig. 7. Time—frequency—energy plot for (a) Rainl (2 December 1990) and (b) Rain1 with a sinusoid of frequency
2250 units. The gray scale represents energy, on a log scale. Analysis was done with a Daubechies 20 wavelet.
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Fig. 8. Same as Fig. 7, but for (a) Rain2 (1 November 1990 (B)) and (b) Rain3 (30 November 1990).
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Fig. 9. Same as Fig. 7, but for (a) Raind (3 October 1990) and (b) Rain5 (1 November 1990 (A)).



V. VenugopallJournal of Hydrology 187 (1996) 3-27 17

RAIN 6

FREQUENCY
=3
S
S

(a)
0 1 2 3 4 5
TIME (hours)
RAIN 7
10
- 5
Q
z
w 0
(@]
L
i
w -5
-10
E 10t 1
£
E 5¢ :
o
0 . . . ' o (b)
0 0.5 1 1.5 2 2.5

TIME (hours)

Fig. 10. Same as Fig. 7, but for (a) Rain6 (3 May 1990) and (b) Rain7 (12 April 1991).
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Fig. 11. Frequency persistence spectrum (FPS) and best basis spectrum (BBS) for (a) Rainl (2 December 1990)
and (b) Rainl superposed with a sinusoid of frequency 2250 units.

computational aspects of our analysis. An important consideration in the wavelet packet
framework is that the signal length be necessarily a power of two. Towards this end, for
Rain1, Rain2 and Rain3, which had more than 8192 points, the signal length was chosen to
be 8192. On the other hand, for Rain4, Rain5 and Rain6, which had about 6600 points, we
chose the signal length to be 4096 instead of padding with zeros to make the signal length
8192. For Rain7, the part of the signal amounting to 2048 points was chosen as the signal
to be analyzed (out of 2060 points). Also in the time—frequency—energy plots (Fig. 7 and
Fig. 10), the energy values (squares of the amplitudes of the best basis coefficients) have
been plotted on a log scale to see contrast in the energy distribution across frequencies. An
additional aspect worth mentioning in these plots is that the frequency axis varies from
zero to ¥, (N is the signal length), and does not represent the actual frequencies. In
addition, m both the FPS and BBS plots that depict the measures quantifying the time—
frequency—scale representations (Figs 11-14), the frequency is normalized by ¥

First, as the cost function that is minimized is the entropy, it implies that the time—
frequency plots will provide maximum contrast in energies. Second, features of a process
are reflected not only in the amplitudes of the coefficients but also in the structure of the
chosen basis, in other words, the way of tiling the time—frequency plane. If the signal were
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Fig. 12. Frequency persistence spectrum (FPS) and best basis spectrum (BBS) for (a) Rain2 (1 November 1990
(B)) and (b) Rain3 (30 November 1990).

to have persistent frequencies (frequencies which preserve their amplitude and phase over
a period of time which is significantly longer than the corresponding wavelength), then the
best basis selected from the wavelet packet family reveals such a feature as elongated
rectangles in the time direction, at those frequencies.

As rainfall is a complicated process, it is impossible to know a priori if any persistent
frequencies are present. To check how and if wavelet packets find the presence of a
persisting frequency, we imposed a sinusoid (of amplitude unity and frequency 2250
units, or a normalized frequency of (2250/4096), i.e. 0.55) over the whole length on a
rainfall data set (Rainl). The time—frequency plot for the rain and the rain with the
imposed sinusoid are shown in Fig. 7(a) and (b), respectively. It is evident from these
figures that, in the latter case, there is an elongated rectangle at the appropriate frequency,
which reveals the presence of a persistent frequency (imposed sinusoid). Correspondingly,
in the FPS (Fig. 11(b1)), we see a spike at a frequency of 0.55 (the frequency of the
superposed sinusoid), which is not present in the frequency persistence spectrum of the
original signal, i.e. Rainl (Fig. 11(al)). Also evident is the peak in the best basis spectrum
at the same frequency (indicating the presence of a ‘feature’ with considerable energy).
The fact that wavelet basis is a rigid basis prevents it from indicating the presence of
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persistent frequencies, if any. Keeping in mind this potentially powerful capability of the
wavelet packet best basis (adaptive tiling), let us look at the time—frequency representa-
tions in the wavelet packet best basis domain of different rainfall events.

Figs 8—10 show the wavelet packet best basis phase-space (time—frequency—energy)
plots and the associated spectra (best basis and frequency persistence spectra) for the
events Rain2—Rain7. One striking feature from the time—frequency plots is the drastic
difference in tiling in some rainfall events compared with the others. For instance, if we
compare the plots for Rainl and Rain4 (or Rain5), we see an intriguing difference in tiling.
For Rainl, the top part of the plot, which corresponds to the decomposition of the high-
frequency bands, is similar to the wavelet decomposition, whereas that for Rain4 is
completely different from the wavelet decomposition. We emphasize here the fact that
with a wavelet decomposition it is impossible to see such differences, although the con-
centration of high- and low-activity regions in time will be similar to that indicated by the
wavelet packet best basis decomposition. Indeed, the difference seems similar to the case
of the difference between Rainl and Rainl with the superposed sinusoid. Hence one can
conclude (with a reasonable amount of certainty) that elongated rectangles in the time—
frequency plot for Rain4 (and Rain5) indicate the presence of persistent frequencies whose
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associated energy is obtained from the BBS. The wavelength (referred to here as EW
(for equivalent wavelength)) corresponding to a particular frequency f is computed as
A = 6vN/f, where ot is the sampling interval and N is the signal length. In the time—
frequency—energy plot for Rainl (sampling interval 10 s), the frequencies between 500
(EW =160 s) and 4000 (EW = 20 s) have been localized very well in time. In other words,
this indicates the presence of short-lived structures of time scales (durations) of the order
of 20-160 s (in the frequency band 500—4000). The FPS indicates that the level of
decomposition corresponding to these frequencies is close to zero, implying that the
localization of these frequencies in time is good (which is expected, as the FPS only
quantifies the time—frequency—energy plot). Referring again to the FPS (Fig. 11(al)),
frequencies which have values around 125 (EW = 640 s) and 350 (EW = 200 s) (nor-
malized frequencies are 0.03 and 0.09) have been localized in the frequency direction very
well, which is indicated by peaks at those points. The level corresponding to these
frequencies is 13, which is the last level of decomposition and corresponds to a time
scale of about 20 h. On the other hand, we note that the BBS (Fig. 11(a2)) indicates
relatively less energy at these frequencies. This means that a structure with a very high
degree of persistence, relatively low frequency and relatively low energy does exist in the
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process. It is conjectured that this corresponds to the stratiform portion of the rainfall
signal, whereas the high-energy short-lived structures (features) correspond to the con-
vective portion of the rainfall event. Further analysis and data are needed to corroborate
this conjecture and implement it for convective vs. stratiform rainfall separation.

In Rain2 (sampled at 5 s), which has just one burst of activity, it is evident from the FPS
(Fig. 12(al)) that there is almost no persisting structure over a time scale of more than
about 4—5 min (the maximum intercept on the (2'**' x frequency) axis is about 60, which,
using the expression for the level from Eq. (4), leads to a level of decomposition equal to
six, which in turn corresponds to about 320 s). The fact that this rainfall event had only one
really strong burst of activity suggests that it should have been due to a short-lived
structure; the best basis corroborates this aspect and also provides us with a quantitative
estimate of the length scale of this structure as equal to about 45 min.

Rain3 (sampled at 5 s) looks similar to Rainl, in terms of having two high-activity
regions. The decomposition of Rain3 in the best basis framework is shown in Fig. 8(b).
The high- and low-activity regions have been depicted fairly well. The BBS indicates an
almost power-law behaviour. From the FPS shown in Fig. 12(b1), it is evident that there is
no particular length scale for the process, except for the really low frequencies (for
instance, the process average), where the analysis shows the presence of a scale of length
equal to the signal length, which is 8192 points or 12 h. This was expected, considering the
fact that rainfall is a positive mean process and the mean has the highest energy, which is
evident from the BBS (Fig. 12(b2)). In addition, the lack of presence of a predominant
scale in the process is confirmed by the BBS, which shows a fairly good linear behaviour
in the log—log domain (a fact worth mentioning here is that the Fourier power spectrum
showed a similar behaviour).

Referring to the plots for Rain4, Rain5 and Rain6 (each of which was sampled at S s),
which are shown in Fig. 9(a), (b) and Fig. 10(a), respectively, it seems that Rain5 seems to
have many persistent structures of the same length scale (from 4—6 h), but over a different
range of frequencies (between 500 (EW =80 s) and 1500 (EW =25 s)), i.e. over the same
length scale, we have different number of periods. Again from the BBS (Fig. 13(b2)), the
energies corresponding to those frequencies are very low (dips at those frequencies).

Rain7, as is evident from the signal, does not have any short bursts of energy, and from
what has been seen until now, we should expect many persistent structures. Indeed, the
time—frequency—energy plot (Fig. 10(b)) and the FPS (Fig. 14(b1)) show this feature. This
indicates that the predominant time scale is between 1.2 and 3 h, which is the duration of
the storm. There is more variation in the first half of the storm compared with the second
half. This aspect is manifested in the time—frequency—energy plot as the presence of high
frequencies (between 800 (EW =15 s) and 1000 (EW =40 s)) with relatively more energy
in the first half compared with the second half (as shown by the contrast in the gray scale).

3.3. Rainfall ‘signal’ compression

Another by-product of the wavelet packet decomposition, which was mentioned in the
Introduction, is the aspect of compression. Table 1 shows the proportion of energy (rela-
tive to the original signal) captured by the signal (rainfall) reconstructed from a number of
(highest) coefficients out of the complete best basis.
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Table 1
Percentage of energy captured by the highest (in absolute value) N coefficients of the best basis
Signal Signal length Number of coefficients Energy captured (%)
(highest)
Rainl 8192 50 81
500 95.4
1500 99
Rain2 8192 50 82.6
500 99.3
1500 99.9
Rain3 8192 50 86.4
500 97.5
1500 99.5
Raind 4096 50 97.3
250 99.1
750 99.8
Rain5 4096 50 95.8
250 98.7
750 99.5
Rain6 4096 50 94.5
250 97.8
750 99.3
Rain7 2048 10 93
50 96.2
100 98

From Table 1 it is evident that with a very few (relative to the size of the signal) best
basis highest coefficients, almost all of the energy is captured. Fig. 15 shows Rainl
reconstructed with the highest 50 and 500 wavelet packet best basis coefficients. Fig. 16
shows the percentage of energy captured by N maximum best basis coefficients, where N
varies from ten to 1000 coefficients, for Rainl. Although not explored here, the compres-
sibility feature of wavelet packet best basis can be useful for storage of large remotely
sensed data sets or even for non-parametric comparison or simulation of hydrologic
processes.

4. Conclusions

From the time—frequency—scale analysis we have performed on the high-resolution
temporal rainfall, we draw the following conclusions:

1. Revealing the presence of time—frequency—scale features in a signal is important for
understanding the structure of a signal in general, and rainfall in particular. Indeed,
persistent high-frequency features may reflect the presence of a periodic (repeating)
process in the rainfall-producing mechanism, e.g. a periodicity in the uplifting vertical
motion of the atmosphere within the precipitating cloud. Also, knowledge of the
presence of such structures, with the associated energy distribution among scales and
frequencies, is useful information which can be used in building energy cascading
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models of temporal rainfall. The tool used in our analysis is wavelet packets, and it is
evident that they are versatile and capture time—frequency—scale features better than
the short-time Fourier (STFT) or wavelet transforms, because they are capable of
representing a signal in a data-adaptive way. In addition, the wavelet packet family
includes both the short-time Fourier and wavelet transforms and thus if either of the
latter were the best representation for the signal, the best basis approach would find it.

2. Our analysis can have several implications for multiscale rainfall modeling and, in
particular, in identifying what type of cascading models are most appropriate for
temporal rainfall (see also Carsteanu and Foufoula-Georgiou (1996)). Wavelet decom-
position is consistent with the assumption of multiplicative cascades currently used for
modeling rainfall (e.g. Lovejoy and Schertzer, 1987; Gupta and Waymire, 1990; Over
and Gupta, 1994), which split the energy in the same way across scales. It is possible, as
shown here, that the distribution of energies changes across scales, resulting in the need
to explore other types of cascading models. As wavelet packets are data-adaptive, they
can possibly show such cascading structures and aid in model building (e.g. see Farge
et al. (1992) for similar ideas in two-dimensional turbulence).

3. Our analysis can lead to valuable interpretations regarding the importance of long-term
(persisting) and short-lived structures in rainfall. We conjecture that structures which
persist, but have relatively low energy in a rainfall event, indicate the presence of a
stratiform portion of rain. A storm in general occurs in a three-dimensional environ-
ment, and the vertical motion (and distribution of heating) of the atmosphere varies
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drastically within the stratiform and convective parts of the storm. Vertical motion in
the convective parts is very active, whereas it is almost non-existent in the stratiform
parts. It is hence of considerable interest to separate the stratiform and convective
components in rainfall, especially for water budget studies in the precipitating clouds.
Based on the results of the one-dimensional study presented here, we envision that the
analysis tool we used, i.e. the wavelet packets, can be successful in a two-dimensional
framework, to separate the convective and stratiform components of a storm. In addi-
tion, considering the fact that wavelet packet best basis is selected in a data-adaptive
way, analysis using wavelet packets would be a more objective approach than the
traditional thresholding techniques or the recently developed eigenvalue technique
(Bell and Suhasini, 1994) for separating convective and stratiform precipitation. The
convective component of a rainfall event is usually the one with high energy and is also
a highly fluctuating phenomenon (e.g. a sudden and heavy downpour). Such a feature
can easily be detected by wavelet packets as the high-frequency short-lived compo-
nents. The stratiform component, being the more subdued component, can be seen in
the wavelet packet best basis regime as a persisting structure with considerably lower
energy (it could be of low or high frequency as demonstrated).

Our analysis is thus seen as a first step in the direction of seeking to unravel frequency—
scale—energy information from the rainfall process and use this information for modeling
and inference (see also the more recent study by Kumar (1996)). Analysis of temporal
rainfall in regimes other than the midwestern regime used in this work is needed to
strengthen the physical interpretation and significance of the unraveled structures. Finally,
application to two-dimensional radar-observed rainfall fields is expected to be more inter-
esting and illustrative, as stratiform and convective parts of the storm are more easily
distinguishable.
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