JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 101, NO. D21, PAGES 26,363-26,370, NOVEMBER 27, 1996

Assessing dependence among weights in a multiplicative
cascade model of temporal rainfall

Alin Carsteanu and Efi Foufoula-Georgiou

St. Anthony Falls Laboratory, Department of Civil Engineering, University of Minnesota,
Minneapolis

Abstract. “Classical” multifractal analysis shows, with a good degree of confidence,
that the fit of multiplicative cascades to rainfall time series is appropriate, at least
from the point of view of preserving the f(a) spectrum of scaling exponents. However,
basing the analysis only on the f(a) curve allows only limited discrimination between
different types of cascade models; thus other descriptors with more discriminating
power are needed. Also, the question of whether cascades with independent weights
are appropriate for rainfall remains unanswered and needs to be addressed. In the
present work we address this question and provide an assessment of the dependence
structure among weights in a multiplicative cascade model of temporal rainfall. We
introduce a quantity based on oscillation coefficients (describing how many of the
total n-tuples of the series are obeying a certain pattern up-down-up etc.), and find
that this quantity is invariant under aggregation for a multiplicative cascade model -
and has the ability to depict the presence and type of correlation in the weights of
the cascade generator. Application of this development to high-resolution temporal

rainfall series consistently suggests the need for negative correlation in weights
of a binary multiplicative cascade in order to match the oscillation coefficient
structure of rainfall. This is interpreted as an indication of dependence in the
splitting mechanisms of intensities cascading over successive scales and might have
important implications for rainfall modeling and process understanding.

1. Current Scaling Models for Rainfall

In recent years, mainly two types of scale-invariant
models have proven successful in describing rainfall pro-
cesses: multiscaling models of rainfall intensities based
on multiplicative cascades [Schertzer and Lovejoy, 1987;
Gupta and Waymire, 1991, 1993; Tessier et al., 1993,
and simple scaling models of rainfall wavelet fluctua-
tions [Kumar and Foufoula-Georgiou, 1994; Perica and
Foufoula-Georgiou, 1996]. A few models propose a com-
bination of simple scaling over successive scaling re-
gions, in long-term series of temporal rainfall intensities
[Fraedrich and Larnder, 1993; Olsson et al., 1993].

Multiplicative cascades are measures defined on the
appropriate -support (e.g., a surface or a time axis),
showing multiple scaling defined as having a curvilin-
ear (strictly convex) Rényi spectrum:
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where 7(At) is the integral of the quantity of interest
(rainfall intensity, in our case) over At. In the par-
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ticular case of simple scaling, we have 7(q) a straight
line: 7(¢) = (1 — q)a, with a unique . Note that
the transformation that relates 7(g) to the spectrum of
scaling exponents f(a) is the Legendre transform (ap-
plicable under suitable assumptions on the generators
[see Holley and Waymire, 1992]): «(q) = —d7(q)/dg;
f(a(q)) = qalq) +7(q) (Frisch and Parisi [1985], and in
rainfall modeling, Schertzer and Lovejoy [1987]). Cas-
cades can be described in terms of an infinite iterative
construction, beginning with a given “mass” (rainfall
depth in our case) uniformly distributed over the sup-
port. Each subsequent step divides the support and
generates a number of weights (which is the “branch-
ing number” of the generator), such that mass is re-
distributed to each branch by multiplication with the
respective weight. To achieve conservation in the en-
semble average of the mass, the expected value of the
sum of weights should be equal to unity.

Different cascade generators have been proposed for
modeling rainfall. According to the probability distri-
butions of their weights, some of the more common ones
are multinomial (where the weights take a finite num-
ber of values with certain probabilities), uniform, and
lognormal (see Gupta and Waymire [1993] for a review).
The choice of the generator’s probabilities in a binary,
binomial cascade as a function of the large-scale aver-
age rainfall has been argued for by Over and Gupta
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[1994]. The lognormal cascade was first proposed by
Kolmogorov [1962] and Oboukhov [1962] in the statisti-
cal theory of turbulence, and has the property that it
is the limiting measure for any generator with weights
whose distribution has all moments finite. A recent
development in this area is the log-Poisson generator
of She and Waymire [1995], which provides excellent
agreement with the scaling observed in turbulence mod-
els. Another cascade model, used by the research groups
of Lovejoy, Schertzer and Hubert, is the log-Lévy model,
in which the logarithms of the weights are distributed
according to a non-Gaussian stable distribution. This
type of cascade produces the limiting measure for the
generators with weight distributions that are attracted
to Lévy-stable distributions [Lévy, 1937] under aggrega-
tion. A number of observations support this model ver-
sus the lognormal [see Tessier et al., 1993], but (as in
the case of different other weight distributions that are
not suitably bounded) the lack of ergodicity of mod-
els with Lévy-exponents greater than unity [Holley and
Waymire, 1992] also raises an estimation issue, since for
real-life data it is hardly feasible to have an estimation
across realizations.

Different methods can be applied to match a cas-
cade model to rainfall time series in the sense of its
(multi)scaling properties [Lovejoy and Schertzer, 1991].
The classical box-algorithm estimates the 7(g) function
from the data (see equation 1), and sets it equal to the
theoretical 7(q) function of the model. However, multi-
plicative cascade generators have yet another degree of
freedom: apart from the probability distribution among
weights in the cascade generator, which determines the
7(q) function, the dependence structure of weights is
needed to fully characterize a multiplicative cascade
model. Effects of dependence in the cascade genera-
tors motivated by higher order improvements to cascade
models, in the case of spatial rainfall fields has been
analyzed by Gupta and Waymire [1995]. The mathe-
matical consequences of a dependence among weights
in multiplicative cascades is beginning to be explored
[see Waymire and Williams, 1995], but its presence has
not been investigated in data in general, and in tempo-
ral rainfall at all, in particular. It is our goal to do so,
and devise the proper tools for that purpose.

2. Assessing Weight Dependence in a
Multiplicative Cascade

2.1. Direct Estimation of Autocoerrelation in
Weights: The Binary Cascade With
Complementary Weights

Throughout this work, we make use of binary (branch-
ing number 2) multiplicative cascades, which are the
most parsimonious cascade models, yet are able to give
rise to multifractality. Among binary cascades, those
with complementary weights (w1 + we = 1) achieve ex-
act (as opposed to statistical) mass conservation from
one level of the cascade to the next (independently of
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the actual distribution of weights) and, consequently,

allow the “exact” reconstruction of the underlying cas- -
cade generator directly from a data set. Therefore we

can also estimate directly the autocorrelation in the

weights of the generator, as well as assess the weights’

distribution. Before proceeding to this end with tem-

poral rainfall data, let us examine the behavior of
the autocorrelation coefficients of lag 1 and 2 in the

weights of a binary multiplicative cascade with comple-

mentary weights. A first observation is the fact that

pw(1) = —(pw(2) + 1)/2 (see Appendix A for proof).

Notice that p,(1) is always negative, an expected fact,

owing to the complementarity in every second pair of
consecutive weights. At the same time, when we refer

to independence of weights (as far as autocorrelation

is concerned), we mean the independence of adjacent

pairs of weights, i.e., quantitatively p,(2) = 0. Simi-

larly, p,(2) # 0 is referred to as dependence of weights.

Notice that for p,(2) = 0 we have p, (1) = —1/2.

The high-resolution temporal rainfall data series used
in this analysis have been collected by an optical rain
gauge at the Hydro-Meteorology Lab of the Iowa In-
stitute of Hydraulic Research in Iowa City, Iowa (see
Georgakakos et al. [1994] for more information about
the data collection). Sampling times were 5 s or 10 s
for each of the seven events analyzed. The events oc-
curred in 1990 — 1991, during different seasons (May
1990, October — December 1990, April 1991), and yet,
as will be shown, they have a consistent, common be-
havior of the dependence in weights. A detailed anal-
ysis of these events, including distributions and power
spectra, can be found in the work by Georgakakos et
al. [1994]. As far as multifractal analysis is concerned,
the log-fits of equation (1) show in all cases high corre-
lation coefficients (see bottom plot in Figure 1 for one
such case), leading to the conclusion that multiplica-
tive cascades would make good scaling models for those
rainfalls. This conclusion is also reinforced by the non-
degenerate f(a) curves, of which an example is shown
in Figure 1 (middle plot).

Weights have been reconstructed from the temporal
rainfall series (rq,72,...) as w; = r;/(r; + 7i41). Notice
here that in reconstructing a cascade, we have no crite-
rion as to which values to pair together, so we have to
try both possibilities, i.e. using pairs ([r1, 2], [r3,74],...),
and pairs ([re,rs), [r4, 5, ...), respectively. The results
for the seven rainfall data series analyzed show a rather
remarkable common feature: they all exhibit an au-
tocorrelation of weights p,,(2) ~ —0.2, corresponding
to pw(l) &~ —0.4, within a close range. (The values
closer to —0.2 for each rainfall event are —0.204, —0.201,
—0.2, —0.199, -0.202, —0.203, —0.185; the other values
are —0.163, —0.186, —0.191, —0.234, —0.194, —0.223,
—0.226.) Although valid only in the context of the
somewhat restrictive model of complementary weights,
we believe this to be a very interesting universal prop-
erty. Once established, it allows modeling these rain-
falls using binary cascades with complementary weight
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Figure 1. (top) The time series of the rainfall event
of December 2, 1990; (middle) the f(a) curve for that
event; (bottom) log-log fits of Y, [rk(AAt)|? against
scale AAt for the same event and for ¢ =0,1,2, 3,4, 5.

generators, whose every second weight is drawn from an
AR(1) model with lag 1 autocorrelation coefficient —0.2
and a cumulative distribution function (CDF) F(z) =
I F(zx/(1 — z))dF(x), where F is the cumulative
probability distribution of the rainfall values. Weight
distributions for the analyzed rainfalls have been found
to fit fairly well a function that corresponds to a lognor-
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mal F. Notice here that since binomial generators are
a particular case of complementary weights generators,
we can assess from the distribution of weights whether

it is appropriate to use a binomial multiplicative cas-
cade for rainfall. To choose a binomial generator, one

would like to see a density distribution of weights show-
ing two symmetric spikes, or at least a bimodal distri-
bution, which was not found to be the case for temporal
rainfall.

In a more general context than cascades with comple-
mentary weights, we will show below that the negative
autocorrelation p,,(2) carries a physical significance, all
the more important as we show that it appears in differ-
ent types of cascade models for temporal rainfall. Also,
for the particular case of binary multiplicative cascades
with complementary weights, it is significant to see that
the py(2) values for the seven events analyzed are re-
markably close to each other, which reinforces the idea
of a common mechanism giving rise to them.

2.2. Indirect Estimation Through Patterns of
Variation Preserved Under Aggregation: The
Oscillation Coeflicients

We would like to relax the requirement of comple-
mentarity in weights and have mass conservation only
in an average sense across the cascade, since there is no
way to assert that our sampling occurs precisely at the
same points where the underlying cascade exhibits its
branching. However, in doing this, we lose the ability
of reconstructing the weights from the rainfall series.
In this case, a straightforward (though indirect) way
of assessing the dependence in the weights of a multi-
plicative cascade would be to relate that dependence
to the autocorrelation function (ACF) of the cascade
model, which can then be compared directly with the
ACF of the rainfall series. This, however, is in most
cases not possible, since the theoretical ACF of some
cascade models might not be defined at all [see also
Holley and Waymire, 1992]. An issue therefore arises to
find a descriptor which is properly defined for most (or
all) cascades, is aggregation-invariant for all cascades
for which it is defined, and has a distinctive behavior
for other processes. The second requirement is needed
since there is no criterion to choose a priori one scale of
the cascade over another in order to describe a natural
phenomenon.

We propose a descriptor of data series that fulfills
the above stated requirements, for the purpose of test-
ing model appropriateness and improving/completing
cascade model fits. We found such a descriptor to be
the series of coefficients which measure the fraction of
the total n-tuples in the series that are obeying a cer-
tain pattern up-down-up etc. For the sake of intu-
itiveness, we will denote the coeflicients for pairs as C|
(= Plrk > rk+1]) and Cp (= Plrk < ri+1]), the ones
for triplets C}, Cy;, C1 and Cjp, and so on.

Oscillation coefficients have a number of properties
that make them attractive for inferring scale invari-
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ance and discriminating between models. Some of these
properties are as follows.

Scale invariance in a multiplicative cascade.
Oscillation coefficients are scale-invariant for a multi-
plicative cascade, and appear to be a direct indicator of
the dependence structure of weights. In binary cascades
the oscillation coefficients turn out not to depend on the
weights distribution, as our simulations show. Also, in
section 2.3 it is pointed out that C;+C4 (hereafter de-
noted Cp) is in a one-to-one correspondence with the au-
tocorrelation p,(2) in the cascade generator’s weights.
Therefore the distribution parameters of the generator’s
weights can be independently chosen to match the spec-
trum of scaling exponents f(«), whereas the weight de-
pendence structure to match Cy; = C|y + Cpy. This
allows for uncoupled estimation of the distribution func-
tion and the dependence structure of the weights of the
cascade generator, emphasizing the importance of tak-
ing advantage of this extra degree of freedom when mod-
eling rainfall series with cascade models.

Independence from CDF. For a sequence of in-
dependent, identically distributed (i.i.d.) random vari-
ables, the coefficients C converge to unique values, in-
dependently of the cumulative distribution function F'
of the process, if F' is continuous. It can be shown
that Cl =1-C = 1/2, C, = CTT = 1/2 —
Cip = 1/2—C); = 1/6, etc., since C; = [ FdF,
Cuy = J5 (Jy’ FdF)dF, etc. This allows us to dis-

criminate between ii.d. random processes and many
nonlinear processes, something that cannot be inferred
from the autocorrelation function which only measures
linear correlation. For instance, in the case of a lo-
gistic series z, = 4zp—1(1 — zp—1) with zo € (0,1)
neither periodic, nor eventually periodic, the expected
values of first-order oscillation coefficients can be shown
to be C; =1—Ct =1/3 (see Appendix B, section Bl),
which immediately shows a striking difference from the
oscillation coefficients of i.i.d. random variables. No-
tice also that we can evaluate the C coefficients for
other types of models. For instance, a stochastic AR(1)
model z, = prp_1 + /1 — p?e,, with lag 1 autocor-
relation p and with the noise €, (of cumulative distri-
bution F) independent of z; and ¢; Vi =1, ...,n-1, has

C,=1-Cy=[F (x,/(1 sy p)) dF(z). If the
(limiting) density distribution of the model is an even
function (which is often the case), then it can be shown
(see Appendix B, section B2) that C| = C; = 1/2. This
fact makes first-order oscillation coefficients inappropri-
ate for distinguishing AR(1) models from i.i.d. random
variables. Second-order coefficients are, in this case,
computed as

CLLZP[[6n+1 < ZTp i—;g A |:En<l'n_.11/}—__;'§ ] =
1 F(;z: i=e )
Jo Jo

1+p> P (px 2 y(1- p)X) dF(x)dF(z),

and are in general different from those of i.i.d. random
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variables. Also, for these processes that are not scale-
invariant, the oscillation coefficients are not aggregation-
invariant either. Rather, their variation over scales de-
picts the lack of scale-invariance in the process.

Capability of indicating underlying continu-
ity /differentiability. The behavior of the oscillation
coefficients for a “closely” sampled differentiable func-
tion is easy to understand, and hereby, inferences can
be made as to whether the data series stems from such a
function, or rather from an inherently discrete process.
To illustrate this, we consider a sinusoid signal, sam-
pled at a rate of 128 samples/period, for a total length
of eight periods. Aggregating the signal five times by
a factor of 2 brings it down to 4 samples/period. Over
this whole range of sampling rates, C; = C|; + Cyy
“feels” the signal as differentiable, by doubling over
each aggregation (see Figure 2, inclined solid line). No-
tice here that the discriminatory power of Cj resides
in depicting whether a signal “is behaving like a dif-
ferentiable function” over the range of scales analyzed,
in the sense of generally conserving its extrema over
scales. It therefore gives an indication of whether it
makes sense to instead use a discrete, or else a continu-
ous/differentiable model over these scales, but it cannot
possibly allow inferences on the nature of the process
at scales below the sampling scale, if such scales are at
all relevant to the process. As far as continuity is con-
cerned, inferences can be made as to the differentiability
of the integral process.

Capability of indicating the presence of noise.
The addition of white noise of low amplitude in the
above sinusoid (standard deviation of noise is 0.003 of
sine amplitude) is felt in Cj only at small scales (dotted
line in Figure 2), afterward it joins the solid line, as ex-
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Figure 2. Cj over repeated aggregation of a sine sig-
nal with added white noise of standard deviations 0.003
(dotted line), 0.03 (dashed line), and 0.3 (dash-dotted
line) of the sine wave’s amplitude. The inclined solid
line represents the values of C for the sine wave with-
out noise, and the horizontal solid line represents the

theoretical value C} = 2/3 for a series of i.i.d. random
variables.
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pected. As we increase the amplitude of the noise (0.03
of the sine amplitude), C} becomes more sensitive to the
added noise: we see the straight line to very definitely
break. Finally, strong noise (0.3 of the sine amplitude)
behaves as a sequence of independent random variables
at small scales (C} ~ 2/3 and approximately constant
over one aggregation) and joins the solid curve only af-
ter four aggregations, when that noise smooths out (see
dash-dotted line in Figure 2). Thus the Cy coefficient
can also be used to make inferences about the presence
of noise in a smooth signal.

2.3. Behavior of Oscillation Coefficients of a
Binary Multiplicative Cascade

Here we try to assess the behavior of oscillation coeffi-
cients as we put a dependence structure along the series
of weights, at each step of the cascade generation. Al-
though we do not exclude the theoretical possibility of
other types of dependence, or of nonstationarity and in-
dependence, we use as a measure of dependence among
consecutive pairs of weights, the lag 2 autocorrelation of
weights p,,(2) along one level of the cascade generator.
We then try to establish a relationship between C} and
pw(2). Since an analytical solution would be extremely
cumbersome, we establish it by simulation for a binary
multiplicative cascade with random, correlated weights
positioning. In our simulation, every weight is related
to the corresponding weight of an adjacent pair through
an autoregressive process. The results indicate that the
Ct o py(2) relationship shown in Figure 3 is indepen-
dent of the distribution of weights, and is a one-to-one,
linearly increasing function. For finite-length series the

0 0.5
Lag 2 autocorrelation of weights

Figure 3. Cj versus lag 2 autocorrelation coefficient of
weights p,,(2) in a binary multiplicative cascade. The
error bars are shown for simulations with lognormally
distributed weights, but the linear relationship itself
was found to be independent of the weight distribu-
tion. The shaded area corresponds to the region of
oscillation coefficients found from the seven analyzed
high-resolution temporal rainfall series. For a cascade
generator with independent weights (p,,(2) = 0) the C;
value was found equal to 0.6 by simulation (dotted line).
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Figure 4. (] versus aggregation length in the seven
rainfall time series (solid lines). The dash-dotted line
represents a realization for a series of iid. random
variables of a length comparable to the rainfall series
(theoretical value of 2/3 shown dotted in Figure 2); the

dashed line stands for a smooth signal (upper part of
the inclined solid line in Figure 2).

realized values of C} have been found to have a Gaus-
sian spread at any given p,(2), not surprising as the
C coefficients can be regarded as average measures of
oscillation patterns along a series and are expected to
obey the central limit theorem. The error bars in Figure
3 indicate plus/minus one standard deviation, denoted
04006 for a series of 4096 values (a length of the order
of magnitude of the rainfall time series). The standard
deviation values of Figure 3 can be used for a sequence

of arbitrary length ! by setting o7 = 040961/4096/1.

3. Matching the Oscillation Coefficients

of a Cascade Model for Temporal
Rainfall

Study of the oscillation coefficients of the seven tem-
poral rainfall series indicates the following:

1. Cy is indeed invariant over all analyzed scales, i.e.,
between the 5-s scale of sampling and scales of the or-
der of magnitude of the storm length, of several hours
(see Figure 4). This reinforces the hypothesis that these
rainfall time series show scale invariance. (Notice that
the observed increase in the spread of the Cj estimates
over aggregation is statistically expected, as discussed
in the previous section.) At the same time, invariance
of (a nonzero) Cy over scales shows that the process
does not exhibit a differentiable function behavior at
any scale between 5 seconds and storm duration (not
even at the smallest scale of 5 s, below which the dis-
crete character of droplets renders the process inher-
ently discontinuous).

2. Although aggregation-invariant, the Cj coeffi-
cients for the rainfall time series (Figure 4) are quite
far from the 2/3 value of i.i.d. random variables, con-
sidering any reasonable probability bounds (as all but
one of the time series have more than 4096 values, and



26,368

the standard deviation of C} around 2/3 at 4096 values
is ~ 6.7 x 10~3). This practically excludes an i.i.d. ran-
dom variables hypothesis for rainfall. It also excludes
the possibility of strong added noise.

3. Finally, and most important, when the values of
the Cy coefficients for the rainfall time series (see Figure
4) are compared to those of a binary multiplicative cas-
cade, they do not match the hypothesis of independent
weights in the cascade generator. Rather, they match
the zone of high negative correlation p,,(2), as can be
seen from Figure 3.

Since in this case too, similar to the case of com-
plementary weights, we obtain consistently that p,,(2)
should be negative for temporal rainfall models, we feel
that there must be a physical cause to this fact. Under
the hypothesis that local rainfall intensities are influ-
enced by turbulent eddies of different scales, and that
within scales of a few minutes atmospheric structures
are convected over a fixed location, let us try to ana-
lyze whether and how it is likely to have this particu-
lar weight dependence structure in place. Conceivably,
both the interactions between adjacent eddies at the
same scale, as well as between eddies decaying from
large scales to small scales, are in play. In our in-
verse problem of determining the dependence structure
of weight positioning for a multiplicative cascade rain-
fall model we only employed correlation along the same
level of the cascade generator. Notice however that in
order to explain how this dependence structure appears
in real-life data, it is necessary to look at the physical
interactions of both types, that is, at the same scale as
well as along scales. '

In a study of how turbulent eddies translate into the
multiplicative cascade, Arnéodo et al. [1992], show that
the branching structure in the time-frequency plane of
a turbulent wind tunnel signal keeps the same symme-
tries over all scales present. As far as precipitation is
concerned, eddies rolling parallel to the Earth’s surface
would tend to create asymmetries in the quantities of
rainfall passing through the ascending and the descend-
ing sides of the eddy, respectively, as an effect of entrain-
ment and coalescence of drops. Therefore the values of
weights induced by each eddy would correspond to its
turning direction. In this context, the interaction be-
tween eddies of the same scale, having a tendency to roll
against each other, translates (via a frozen-field hypoth-
esis) rather simply into negative correlation between ad-
jacent pairs of generator weights, at every level of the
cascade. This observation, by itself, would be enough
to account for the negative correlation p,,(2) in weights
found herein, but we know for a fact that interactions
among eddies at different scales do also exist, and these
interactions seem more difficult to pinpoint than those
of adjacent eddies at the same scale, and even more so,
to translate in terms of cascade weights positioning. Let
us therefore look at a general form of (statistical) de-
pendence between weights at two successive levels in a
binary multiplicative cascade model with complemen-
tary weights. We consider a correlation p between a
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weight at a certain level of the cascade (corresponding
to a certain scale in the process) and one of the weights
into which it subsequently splits. In Appendix C we
show that this dependence between different levels of
the cascade induces a dependence along each level of
the cascade, which in terms of p,(2) is

2

P
2+ P

pw(z) = (2)
The curve obtained for p,,(2) as a function of p is shown
in Figure 5. The remarkable fact is that all the values
of p(2) are negative, i.e., we may conclude that any
correlation from one level of the cascade to the next
results in a negative correlation p,(2). (Independence
between cascade levels yields as expected a zero correla-
tion p,,(2).) This fact, together with the considerations
regarding the interaction of eddies at the same scale,
tells us that a cascade model with negative correlation
of weights pairs, as obtained from the analysis of rainfall
time series, also makes full sense from the point of view
of the heuristics of the physical phenomenon. More-
over, the relatively narrow ranges of p,,(2) values for all
seven rainfall series of different seasons and durations
(see Figure 3) corroborate the importance of looking
further into this antisymmetric energy-cascading mech-
anism as a unique underlying property of rainfall.

4. Conclusions

In this paper the need for exploring dependence struc-
tures in the weights of a multiplicative cascade model
for temporal rainfall was argued for. A quantity Cj
based on “oscillation coefficients” was introduced and it
was shown that it is scale-invariant for a cascade model
and that it has the ability to depict the presence and
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Figure 5. The limiting value of the autocorrelation
pw(2) in a binary multiplicative cascade with comple-
mentary weights (see equation 2), resulting from the
dependence between successive levels of the cascade, as
a function of the correlation p (defined in the text) be-
tween weights at consecutive levels.
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type of correlation in the weights of a multiplicative
cascade generator.

Application of the above developments to seven high-
resolution temporal rainfall series has indicated the fol-
lowing. (1) Invariance of C; = Ct + C1 over all exist-
ing scales (between the 5-second scale of sampling and
scales of the order of magnitude of the storm length,
i.e., several hours) confirms the aggregatlon-mvarlance
of the rainfall process as shown by multifractal analysis,
and also firmly indicates that these rainfall time series
do not exhibit differentiability at any of these scales. (2)
Although aggregation-invariant, Cj is quite far from the
2/3 value of i.i.d. random variables, considering any
reasonable probability bounds, which practically ex-
cludes the i.i.d. random variables hypothesis, and there-
fore the hypothesis of aggregation invariance achieved
by Lévy-stably (including normally) distributed, inde-
pendent random variables. (3) A zone of negative cor-
relation between consecutive pairs of weights in a bi-
nary multiplicative cascade resulted both directly (in
the case of complementary weights), as well as indi-
rectly through the oscillation coefficients (in the case of
noncomplementary weights).

It must be emphasized that in this work, we examine
two types of multiplicative cascade generators, which in
fact are “extremes” as far as the correlation within the
pair of generator weights is concerned, This correlation
is by default equal to —1 in the case of the complemen-
tary weights [w,1 — w] generator, and was set here to
0 in the case of the noncomplementary weights gener-
ator. However, in the case of the noncomplementary
weights generator, the correlation of weights within a
pair could be set to a nonzero value, adding thus one
more degree of freedom (and one more parameter) in
the cascade generator. This correlation within the pair
of weights is heuristically expected to be of some neg-
ative value, since local mass conservation would have
an effect in a statistical sense in the “split” of the eas-
cading values. Therefore, in the future, resolving this
additional parameter of the cascades used for modeling
temporal rainfall would offer a more complete model
and would also establish a contiguous domain for the
values of p,(2).

At the present time, the match of the temporal rain-
fall data series with a binary multiplicative cascade with
consistently negative correlation between adjacent pairs
of weights along the sequence can be, as shown, inter-
preted as a match with a cascade exhibiting dependence
between one scale to the next. This is important, in our
opinion, since it appears that bifurcation patterns of
rainfall shown in the time-frequency domain exhibit di-
rect or inverse symmetries along successive scales [e.g.,
Venugopal and Foufoula-Georgiou, 1996]. This kind of
dependence, otherwise difficult to depict in real-life data
for reasons of inherent corruption by side effects, is
in our opinion not only providing a better fit of the
dependent-weight multiplicative cascade model to tem-
poral rainfall event data, but is also a step forward in
underst_and.ing the phenomenon.
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Appendix A: Autocorrelation
Coefficients of Weights in a Binary
Multiplicative Cascade With
Complementary Weights

Here we show that, for a binary multiplicative cascade
with complementary weights [w, 1—w], p.,(1) relates lin-
early to py,(2). Denoting by E the expected value oper-
ator, the lag 1 autocorrelation of the weights sequence
expressed by averaging over the two types of consecu-
tive weights that appear, i.e., within a pair [w,1 — w]
and in between pairs, is

Eif(w —1/2)1 —wi =1/2)}
2E{(w; —1/2)2}

E{(1 —wi —1/2)(wir2 — 1/2)}

' 2E;{(w; —1/2)2}
_ Bif(wi —1/2)%}
2E;{(w; —1/2)}

Ei{(wi —1/2)(wit2 — 1/2)}
2Ei{(w; —1/2)%}

14002
.

Pw(1)

Appendix B: Derivation of Oscillation
Coefficients

B1. Logistic Function

The invariant cumulative distribution for the nonpe-
riodic orbits of the logistic function z, = 4rp,—1(1 —
ZTp—1) With o € (0,1) (no attracting periodic orbits
exist) is F(z) = [5 7= Ix12(1 — x)"V2dy = 1/2 +
arcsin(2z — 1) /7r ‘Fixed points are given by z* =
4r*(1 — z*) < 2*(3 —4z*) = 0, so z} = 0 and
T5 = 3/4'. It turns out that z, >z, for 0 < x,_; <
3/4, and =, < z,-; otherwise. We therefore have
Ci =P0<z<3/4,andintun C) =1-C; =
1 - F(3/4) =1/2 — arcsin(1/2) /7 =1/3.

B2. AR(1) Model

In an AR(1) model z, = pzp—1++/1 — p2en, with lag
1 autocorrelation p and with the noise €, (of cumulative
distribution F') independent of z; and ¢;, Vi =1,...,n-1,
if the distribution of the noise is a stable distribution
(attractive under aggregation), then z, will have that
same stable distribution. Moreover, if the density distri-
bution is an even function (which is often the case), then
F(z)—F(0) is an odd functlon, and so is F(az) — F(0),
Va € R. That implies fo (F(az) — F(O))dF(:c) = 0,
and therefore f F(az)dF(z) = F(0) fo dF(z) = F(O)
Since F(z) — F(O) is an odd function, and F(—o0) =
F(o0) =1, we have F(0) =1/2and so C| =C; = 1/2
A rather simple heuristic of symmetry tells us that the
same is true for all ARMA models with symmetric dis-
tributions.
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Appendix C: Derivation of p,(2) as a
Function of the Correlation p Between
Weights at Consecutive Levels in a
Binary Multiplicative Cascade With
Complementary Weights

In order to express p,(2) as a function of p, we look

at its behavior as the cascade splits from larger scales’

to smaller scales, and try to find a limiting value. If we
adopt an AR(1) model to describe the autocorrelation
from a larger scale (k) to a smaller scale (k + 1), we
have:

wi™ —1/2= (w® - 1/2p+ ¢
and (k+1) 4 (k)
Woiqo’ —1/2= (w1 —1/2)p + €y,
which leads to
Ef(wi™ - 1/2)(wiy - 1/2)} =
PPE{(w® —1/2)(w; - 1/2)}
(k+1) (2) (k) (1) § 2 Pw (3)

The fixed point of p,,(2) consequently results:

2pw(2)+1 :}(2) - P2

This fixed point is indeed attracting, since the absolute

value of the derivative p?/2 of the iterated function is

strictly less than unity. Therefore the above expression

is always the limiting value of p,,(2) in a binary mul-

tiplicative cascade with complementary weights, for all
e [-1,1).
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