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[1] Relationships between channel characteristics (e.g., mean depth, water surface width,
mean velocity) and discharge, known as hydraulic geometry (HG), have been extensively
used by hydrologists and geomorphologists since the seminal work of Leopold and
Maddock [1953]. On the basis of recent empirical evidence that the parameters of at-site HG
depend systematically on the contributing area (scale) and that the parameters of
downstream HG depend on the frequency of discharge, we propose a multiscaling
formalism within which to model and interpret both at-site and downstream HG in a
homogeneous region. In particular, we postulate and test multiscaling models for cross-
sectional area and discharge and derive generalized HG relationships that explicitly account
for scale-frequency dependence. The multiscaling formalism is tested in several basins in
Oklahoma and Kansas for drainage areas ranging from 2 to 20,000 km2 and shows good
agreement with the data. To quantify the effects that scale dependence in HG has on the
hydrologic response of a basin, a geomorphologic nonlinear cascade of reservoirs model has
been used to compute attributes of a representative hydrologic response function for various
levels of catchment-averaged effective rainfall and different basin orders. The numerical
experiment shows substantial differences in hydrologic response when using classical
versus generalized HG. Finally, a preliminary effort is reported to generalize even further the
HG relationships such that they can account for deviations from a single power law (e.g.,
consideration of two different power laws in low- and high-flow regimes) through the
introduction of a bivariate mixed multiscaling framework. INDEX TERMS: 1860 Hydrology:

Runoff and streamflow; 1824Hydrology: Geomorphology (1625); 1821Hydrology: Floods; 3220Mathematical

Geophysics: Nonlinear dynamics; KEYWORDS: hydraulic geometry, hydrologic response, scaling
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1. Introduction

[2] The dependencies between channel properties and
river flows have been observed for a long time, and
empirically described by the notion of hydraulic geometry
(HG). Hydraulic geometry was first introduced in the
pioneering work of Leopold and Maddock [1953] and refers
to the power laws relating the channel width W, mean depth
D, and mean velocity V to discharge Q: W = aQb, D = cQ f,
V = kQm. (Hereafter the width W, mean depth D, mean
velocity V, cross-sectional area CA and discharge Q are
referred to as HG factors). These relationships have been
observed to hold either for different discharges at an
individual cross section (hereafter called at-station HG), or
for different downstream locations related through some
characteristic discharge of constant frequency of exceed-
ance (hereafter denoted as downstream HG). Figure 1
(reproduced from Leopold and Maddock [1953]) illustrates
the idea for one HG factor, the velocity.
[3] For at-station HG, the single power law relationships

are widely used although some deviations from a single

power law have been reported in the literature, either as a
change in the exponent in the log-log plot of velocity and
discharge with increasing discharge, or in general as loss of
log-log linearity when discharge increases [e.g., Richards,
1976; Wong and Laurenson, 1984; Bates, 1990; Pilgrim,
1976]. In contrast, the log-log linearity in downstream HG
has been supported by many empirical [Carlston, 1969;
Park, 1977] and theoretical [Parker, 1979; Huang et al.,
2002] studies. Many empirical models [e.g., see Rhoads,
1991] consider the proportionality coefficient and the expo-
nents of hydraulic geometry as functions of some specific
discharge and the grain size of bed and/or bank material.
Since both grain size and discharge generally depend on the
contributing area (scale), it is clear that the magnitude of the
power law exponents will also depend on the contributing
area and frequency of occurrence of a specific discharge.
[4] Analytical derivation of scale-frequency-dependent

HG based on first principles is not known to the best of
authors knowledge, and this is probably because the at-
station and downstream hydraulic geometries represent two
different (although mutually dependent) processes, which
‘‘live’’ in different timescales. On the other hand, approach-
ing HG from a statistical point of view seems fruitful,
especially given that a rigorous mathematical-statistical
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framework exists, that of ‘‘multiscaling scale invariance’’,
within which processes whose spatial variability changes
with scale and frequency can be concisely described. In
essence, multiscaling scale invariance implies that the prob-
ability distribution function of a random field indexed by
scale, can be appropriately rescaled via a random or non-
random function which depends on scale only. The multi-
scaling framework has been successfully employed to
provide a theoretical basis for the empirically observed
scale-dependent behavior of flood peaks in the context of
regional quantile analysis [e.g., Gupta and Waymire, 1990;
Gupta et al., 1994; Gupta and Dawdy, 1995]. Other appli-
cations of this concept have appeared in atmospheric turbu-
lence, rain and clouds (e.g., see Schertzer and Lovejoy
[1987] for an early reference), in river networks [e.g., Gupta
and Waymire, 1989], and in solute transport [Sposito and
Jury, 1988]. In this paper, it is shown that the multiscaling
framework can provide a theoretical basis for interpreting
and modeling the scale and frequency dependent relations
between channel morphometry and discharge (known as
HG).
[5] This paper is structured as follows. In section 2,

empirical evidence is provided (based on 85 stations in
Oklahoma and Kansas for basins ranging from 10 to above
10000 km2) that at-station HG depends systematically on
scale and downstream HG depends on the frequency of the
characteristic discharge. In section 3, a multiscaling model is
proposed for channel cross-sectional area and discharge and
is used to derive generalized at-station and downstream HG
for cross-sectional area and velocity. The parameters of the
generalized at-station HG are analytical functions of the
multiscaling model parameters and the contributing area
(scale). Analytical derivation of the parameters of the down-
stream HG is not possible and these have been computed
numerically. The theoretically derived HG (both at-site and
downstream) is compared to the empirical HG with good
agreement, supporting thus the proposed generalized model.
In section 4, the hydrologic response of a hypothetical
catchment has been computed based on geomorphologic

nonlinear reservoirs in networkmodel and assuming classical
versus generalized HG. This comparison is revealing and
highlights important implications of the scale-dependent (and
thus spatially heterogeneous) HG on the nonlinearity of
hydrologic response. Finally, based on the observation that
a single power law relationship of velocity versus discharge
may not hold for a wide range of discharges (it often breaks
for discharges close and above bank-full), and also that there
is a considerable spread in the log-log linear relationships of
HG (pointing to the fact that they have to be seen as stochastic
and not deterministic relationships), an extension of the
lognormal multiscaling framework to a bivariate mixed
lognormal multiscaling framework is proposed in section 5.
A preliminary analysis shows indeed that this extended
framework has the potential to capture the scale frequency
dependence of HG for composite log-log linear relationships.

2. Empirical Evidence for the Need to Revisit
Hydraulic Geometry

[6] We start with a brief review of the Leopold and
Maddock’s [1953] original work. The at-station HG relation-
ships were proposed based on analysis of 20 natural river
cross sections representing a large variety of rivers in the
Great Plains and the Southwest. They found that the relations
of width, mean depth and mean velocity to discharge (up to
bank-full stage) were in the form of simple power laws: W =
aQb, D = cQf and V = kQm, with average values of the at-site
exponents: b = 0.26, f = 0.40, and m = 0.34. Some consid-
erable variation in the exponents was reported, but no
quantitative explanation of this variability was attempted
since the effort was to capture the general trends. Besides,
the stations used in the analysis had large contributing areas
(2500 to 70,000 km2), thus neglecting the possibility of
observing a trend in the at-station exponents at smaller scales.
[7] Regarding the downstream HG, extensive analysis of

several rivers of different sized drainage basins and widely
different physiographic settings indicated that the rates of
increase in depth, width and velocity with increasing mean

Figure 1. At-station and downstream HG [after Leopold and Maddock, 1953].
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annual discharges in the downstream direction were power
laws with average values of exponents b = 0.5, f = 0.40 and
m = 0.1 [Leopold and Maddock, 1953]. However, the
conclusion that the downstreamHG exponents do not depend
on the frequency of discharge was based on the analysis of
data from two regions: Maumee and Scioto basins in Ohio
and Yellowstone River basin in Wyoming for which dis-
charges other than the mean annual discharge (namely dis-
charges with frequency of exceedance F = 1, 4, 10, 30 and
50% of time) were considered. Although the plots showed
some variability in the log-log slopes for different frequen-
cies, Leopold and Maddock considered the general trends
and proposed that the exponents could be assumed constant.
Again, the contributing areas of the chosen stations were of
ordersO(102 to 105) neglecting a possible trend, which could
be observed at smaller scales (100 to 102 km2). Referring to
Figure 1, the Leopold and Maddock [1953] relationships
imply parallel lines in the log-log space, i.e., AC k BD and
AB k CD, since the slopes are independent of contributing
area and exceedance frequency of discharge.
[8] Similar results (in terms of constant exponents in the

power law relationships) were obtained by Stall and Fok
[1968] in their analysis of data from 18 basins in Illinois.
Stall and Fok [1968] observed that in the interval of
frequencies of exceedance F (the proportion of time in
which a particular HG factor is greater than or equal to a
given value) between 0.1 and 0.9, the logarithm of hydraulic
geometry factors can be represented as linear functions of F
and of the logarithm of contributing area A in the form:

lnW F;Að Þ ¼ a0
W þ b0WF þ g0W lnA ð1aÞ

lnCA F;Að Þ ¼ a0
CA

þ b0CA
F þ g0CA

lnA ð1bÞ

lnV F;Að Þ ¼ a0
V þ b0VF þ g0V lnA ð1cÞ

lnD F;Að Þ ¼ a0
D þ b0DF þ g0D lnA ð1dÞ

lnQ F;Að Þ ¼ a0
Q þ b0QF þ g0Q lnA ð1eÞ

where a0
(.), b0(.) and g

0
(.) are empirical regression coeffi-

cients and CA denotes cross-sectional area. Combining
equations (1a) to (1d) with equation (1e) it can be shown
that the above equations are consistent with Leopold and
Maddock’s [1953] power laws with exponents constant at-
station and downstream. If plotted as logarithms of HG
factors versus logarithm of contributing area for different
frequencies, the above equations represent parallel straight
lines with slopes g

0
(.) and intercepts a0

(.) + b0(.)F.
[9] Considering the results of Stall and Fok [1968], one

has to take into account the fact that the measurements of HG
factors at flows close to bank-full ones are strongly influ-
enced by dynamic storages due to backwater effects, increase
in the content of suspended sediment, increase of the
momentum transfer toward banks, secondary currents, etc.
Taking into account the fact that on the mean the channel
profile diverges faster downstream than upstream, it is
expected that in the downstream direction the effect of the
dynamic storage will increase faster with discharge, resulting
in a lower rate of increase of velocity and higher rate of
increase in depth and cross-sectional area. In contrast, the

upstream rate of increase of velocity will be higher, and the
rate of increase of the cross-sectional area and depth will be
lower. The closer the flow conditions to bank-full ones, the
stronger the effect of dynamic storage downstream. As a
result, the mean velocity at bank-full flow will become
almost constant at any cross section, while for lower dis-
charges the mean velocity will increase with contributing
area. In the context of the Stall and Fok’s [1968] relationships
such a scenario will imply nonconstancy of the parameters
g
0
(.) in terms of different slopes for different frequencies in

equation (1)equation (1). If for example we assume that g0(.)
are linearly dependent on frequency, it can be shown that the
exponents of the at-station relationships are functions of the
contributing area and the downstream exponents, functions
of the frequency. As will become apparent later, the assump-
tion of linear dependency of g0(.) on frequency of exceedance
is a special case of the proposed multiscaling framework for
frequencies between 0.1 and 0.9. Careful examination of
Stall and Fok’s [1968] observations actually supports the
above considerations: the results published in their paper for
Sangamon River basin undoubtedly show dependence of the
at-station exponents on scale (see Figure 2 reproduced from
their tabulated results), although this was not explicitly
considered in their analysis.
[10] To examine independently the assumption about the

constancy of the exponents for a larger number of stations
and in a region with relatively homogeneous topographic,
geologic and climatic conditions we analyzed data from
85 gauging stations from Oklahoma and Kansas, USA (see
Figure 3). The data consists of (1) independent measure-
ments of width, mean depth, cross-sectional area, mean
velocity and discharge under different flow conditions (up
to several hundred measurements per station) and (2) time
series of at least 5 years of daily discharges for every
station. Gages were chosen such that there are only minor
streamflow regulations upstream and such that there is a
similar underlying geology of drainage basins in order to
avoid significant effects of geologic controls on the
analysis.
[11] It is noted that for most of the stations, good log-log

linearity between hydraulic geometry factors was observed.
Figure 4 shows a typical example of these log-log relation-
ships. Note that the (CA, Q) relationship shows the best log-
log linearity, while a lot of scatter is found in the (V, Q) plots
and, in general, deviation from log-log linearity is observed

Figure 2. Plot of at-station exponents for velocity for
18 stations in Sangamon River basin, Illinois (reproduced
from the values of Table 8 of Stall and Fok [1968]).
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in the (W, Q) and (D, Q) relationships, especially for high
and low discharges. Table 1 lists the fitted exponents and
preexponents of the (CA, Q) and (V, Q) power law relation-
ships for all 85 stations used in the analysis.
[12] Table 2 shows the overall goodness of fit of these

log-log relationships in terms of the mean R2 for all
85 stations. Table 2 also includes measures of the linear
correlations between the residuals in terms of mean run test
scores and the average (over the 85 stations) of the means of
the first 10 autocorrelation coefficients. The best candidate
for a good log-log linear relationship is the cross-sectional
area (for detailed discussion on the at-station statistical
properties of HG factors, see Dodov [2003]). The mean
R2 for the velocity is low but the residuals are uncorrelated,
which suggests that power laws are representative but with a
lot of scatter. The relationships for the width and the depth
show lower mean R2 but more correlated residuals and their
log-log linearity is, in general, questionable. The strong
power law relationships between cross-sectional area and
discharge motivated us to consider CA as the channel
morphometry parameter for the multiscaling framework
proposed in the next section.
[13] Figure 5 shows the fitted at-station HG for CA and V

for two stations (of areas approximately 20 and 4000 km2,
respectively) and the discharge frequency curve constructed
from daily flows. As can be seen, the slopes of the log-log
linear relationships depend on the contributing area. In
Figure 6 we plot the at-station exponents for cross-sectional
area and velocity (estimated from the above fitted log-log
relationships to each of the 85 stations) versus contributing
area, and in Figure 7 we plot the downstream HG for CA and
V for discharge frequencies of exceedance 90 and 1%. (The

Weibull plotting position was used to estimate nonparametri-
cally discharges of a specific frequency.) Obviously there is a
trend of the at-station exponents with contributing area
(Figure 6) and a dependence of the downstream exponents
on the frequency of discharge (Figure 7). These trends
present the motivation of our work to revisit HG and propose
a generalizedmodel capable of reproducing in a parsimonious
way the scale and frequency dependence of HG.
[14] In the next section, we (1) propose a class of multi-

scaling models for HG factors CA and Q, (2) fit these
multiscaling models to observations and test their validity,
and (3) derive the exponents of the at-station and down-
stream HG for CA and V in terms of the parameters of the
multiscaling models. Before proceeding to the next section
the reader is advised to read Appendix A for a brief review
of the multiscaling framework or refer to the original work
of Gupta and Waymire [1990] and Gupta et al. [1994] for an
in-depth presentation of multiscaling in the context of flood
peak analysis.

3. A Multiscaling Formalism of
Hydraulic Geometry

3.1. Multiscaling of Discharge and
Cross-Sectional Area

[15] The following hypothesis is posed: The discharge
and cross-sectional area obey log-Lévy multiscaling models
with pth quantiles in the form:

lnCAp
Að Þ ¼ aCA

þ bCA
lnA

� �
þ gCA

þ dCA
lnA

� �1=a
wp;

ð2aÞ

Figure 3. (left) Locations of the 85 stations used in our analysis with their corresponding watersheds
and (right) type of most shallow aquifers. The ID numbers of the stations and their contributing areas are
given in Table 1.
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lnQp Að Þ ¼ aQ þ bQ lnA
� �

þ gQ þ dQ lnA
� �1=a

wp;

for A0
l < A < A1

l ð2bÞ

where a0
(.), b

0
(.), g

0
(.) and d0(.) are parameters, wp denotes the

pth quantile of �W, where W has a Lévy stable density with
characteristic exponent a, A is the contributing area, and Al

0

and Al
1 represent some limiting contributing areas within

which the scaling behavior holds (see background in
Appendix A).
[16] The general multiscaling framework of Gupta and

Waymire [1990] can accommodate a wide class of log-Lévy
stable distributions for the quantities of interest. Lévy stable
distributions are, in general, four parameter distributions
with probability density S(x; a, b, d, c) where 0 < a � 2 is a
characteristic exponent, �1 < b � 1 is a skewness or
symmetry parameter, �1 < d < 1 is a location parameter,
and c > 0 is a scale parameter. In the symmetric case (b = 0),
this class includes the Cauchy (a = 1) and Gaussian, N(a =
2, b = m, 2c2 = s2) distributions. The characteristic function
of the symmetric stable class [Lamperti, 1966] is

r xð Þ b¼0

�� ¼ e idx� cxj jað Þ ¼ cos dxð Þe � cxj jað Þ þ i sin dxð Þe � cxj jað Þ

¼ C xð Þ þ iS xð Þ ð3Þ

where x is a real number in (0, p/2].
[17] Gupta et al. [1994] attempted estimation of log-Lévy

multiscaling models for maximum annual floods. Since
overall estimation of the parameter a proved difficult, the
special models of (b = 0, a = 2; b = 0, a = 1.5; b = 0, a = 1
and b ± 1, a = 1.5) were fitted and the lognormal model (b =
0, a = 2) ended up being selected as their working model.
Yet, significant deviations from the lognormal distribution
were reported as it is known that maximal annual floods

have in general thicker tails than lognormal models and
extreme type distributions have been the choice for floods.
In contrast, lognormal distributions have generally offered
good approximations for the daily discharges we consider
here and have been used extensively for flow duration
curves [e.g., see Ashmore and Day, 1988; LeBoutillier
and Waylen, 1993]. Examination of the empirical probabil-
ity distributions of CA and Q showed that these distributions
are well approximated as symmetric in the log domain.
Therefore the assumption of b = 0 was made and symmetric
stable laws were fitted to daily discharges for the 85
analyzed stations using the method developed by Arad
[1980]. This method is based on a linear regression of
log[�logĈ(x)] on logjxj where Ĉ(x) is the sample charac-
teristic function (recall that because of the symmetry the
characteristic function is real, i.e., S(x) = 0). If the data
obey a symmetric Lévy stable distribution, the plot should
form a straight line with slope a and intercept log(ca).
Figure 8 shows an example of these plots for daily Q and for
two stations of different drainage area, approximately 20
and 8000 km2, respectively. Fitting each of these plots with
a single straight line (overall, not a bad approximation)
resulted in estimates of the characteristic exponent a as
shown in Figure 9. Deviation of a from the value of 2
implies deviation from a lognormal distribution, which
might be the case especially for larger areas as suggested
by Figure 9.
[18] It is noted that the multiscaling model of equation (2)

implicitly assumes the existence of a single log-Lévy
distribution (single value of a) that represents well the
PDFs at all scales. In fact, the value of a in equation (2)
would be estimated by fitting (as explained in the next
section) all the parameters of the multiscaling models (2a)

Figure 4. Example log-log relationships between width, cross-sectional area, mean velocity, mean
depth, and discharge.
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Table 1. List of the 85 Stations Used in the Analysis Together With Their Contributing Areas and the Parameters of the Fitted At-Station

Power Laws for CA and V

Station ID Contributing Area, km2

Cross-Sectional Area Mean Velocity

Exponent r Preexponent q Exponent m Preexponent k

73274408 2.85 0.60 1.20 0.40 0.83
73274406 8.91 0.74 1.50 0.26 0.67
6879650 10.59 0.66 1.96 0.34 0.51
7165565 14.11 0.79 2.78 0.21 0.36
7328180 18.98 0.61 1.63 0.39 0.61
7177800 19.49 0.70 2.96 0.30 0.34
7177650 21.23 0.60 2.29 0.40 0.44
6914990 22.81 0.78 2.33 0.22 0.43
7327442 30.03 0.67 1.69 0.33 0.59
7164600 31.58 0.64 2.38 0.36 0.42
6893560 38.55 0.55 4.02 0.45 0.25
7165562 46.08 0.78 3.38 0.22 0.30
7311200 63.69 0.74 3.01 0.26 0.33
6893300 68.86 0.70 2.70 0.30 0.37
6914950 74.30 0.67 2.56 0.33 0.39
7329852 114.17 0.82 2.93 0.18 0.34
6893080 119.09 0.69 3.16 0.31 0.32
7327447 160.25 0.64 2.35 0.36 0.43
7180500 284.78 0.66 2.63 0.34 0.38
6911900 295.13 0.84 2.39 0.16 0.42
7144910 302.90 0.86 2.34 0.14 0.43
6870300 310.67 0.85 3.58 0.15 0.28
7247500 315.84 0.74 1.96 0.26 0.51
7167500 333.97 0.87 2.04 0.13 0.49
7305500 341.73 0.84 2.38 0.16 0.42
7325800 341.73 0.80 2.36 0.20 0.42
7145700 398.69 0.82 3.17 0.18 0.32
6889200 406.45 0.82 2.43 0.18 0.41
6910800 458.23 0.80 2.63 0.20 0.38
6894000 476.35 0.75 2.28 0.25 0.44
6893500 486.71 0.82 1.64 0.18 0.61
7184000 510.01 0.85 3.43 0.15 0.29
7169800 569.55 0.82 2.94 0.18 0.34
7327550 610.98 0.59 3.61 0.41 0.28
6888000 629.10 0.65 3.51 0.35 0.28
6814000 714.53 0.83 2.59 0.17 0.39
6889500 750.78 0.71 3.69 0.29 0.27
6917380 755.95 0.81 2.61 0.19 0.38
6917000 763.72 0.81 3.68 0.19 0.27
6878000 776.66 0.82 3.88 0.18 0.26
6888500 818.09 0.72 3.33 0.28 0.30
7159750 828.44 0.84 2.54 0.16 0.39
6884200 890.58 0.83 2.25 0.17 0.44
6876700 994.13 0.75 4.57 0.25 0.22
6892000 1051.09 0.82 2.76 0.18 0.36
6885500 1061.44 0.87 2.80 0.13 0.36
7160500 1061.44 0.83 2.99 0.17 0.33
7147070 1102.86 0.83 2.73 0.17 0.37
6890100 1115.81 0.81 2.69 0.19 0.37
7172000 1152.05 0.79 3.24 0.21 0.31
7191000 1165.00 0.79 2.63 0.21 0.38
7230500 1180.53 0.73 3.00 0.27 0.33
7153000 1491.20 0.78 2.48 0.22 0.40
6863500 1537.80 0.86 2.66 0.14 0.38
7329700 1563.68 0.64 3.60 0.36 0.28
7311500 1597.34 0.89 2.33 0.11 0.43
7145200 1682.77 0.79 3.30 0.21 0.30
7335790 1832.93 0.86 2.92 0.14 0.34
7143300 1884.71 0.88 3.46 0.12 0.29
7141175 1902.83 0.87 2.93 0.13 0.34
7143665 1905.42 0.90 3.04 0.10 0.33
7180400 1952.02 0.86 2.05 0.14 0.49
7143672 1964.96 0.95 2.57 0.05 0.39
7144780 2037.45 0.77 3.35 0.23 0.30
7151500 2055.57 0.76 3.05 0.24 0.33
7316500 2055.57 0.82 2.42 0.18 0.41
7231000 2239.38 0.78 2.27 0.22 0.44
7149000 2337.76 0.76 2.96 0.24 0.34
7148400 2612.18 0.85 2.43 0.15 0.41
7186000 3013.46 0.65 3.66 0.35 0.27
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and (2b) simultaneously. This value, admittedly different
than the average value of a obtained from Figure 9 (a =
1.92), would certainly be very close to 2, thus making it
appealing to adopt the lognormal multiscaling model (which
offers easier fitting as well as interpretation) as a working
model. Future investigation of the possible dependence of a
on scale would be interesting, however.
[19] It is important to notice at this point, that if two

lognormally distributed random variables are related
through a power law Y = aXb (or lnY = lna + blnX) it
follows that their quantiles match, i.e.,

zln Yp ¼ ln Y � E ln Y½ �
Var ln Y½ �f g1=2

¼ b lnX þ ln a� bE lnX½ � � ln a

b2Var lnX½ �f g1=2

¼ b lnX � E lnX½ �f g
b Var lnX½ �f g1=2

¼ lnX � E lnX½ �
Var lnX½ �f g1=2

¼ zlnXp ð4Þ

[20] Therefore, if Q and CA obey the lognormal multi-
scaling models of equation (2) (with a = 2 and wp = zp, the
pth standard normal quantile) then, in view of equation (4),
the quantiles of V can be expressed through the ones of Q
and CA in the form

lnVp Að Þ ¼ aQ � aCA
þ bQ � bCA

� �
lnA

� �
þ gQ þ dQ lnA
� �1=2h

� gCA
þ dCA

lnA
� �1=2i

zp ð5aÞ

It is noted that equation (5a) cannot be directly brought into
a form required for multiscaling of V, i.e.,

lnVp Að Þ ¼ aV � bV lnAð Þ þ gV � dV lnAð Þ1=2zp; ð5bÞ

where aV, bV, gVand dVare explicit functions of a
0
(.), b

0
(.), g

0
(.)

and d0(.) and (�) denotes CA and Q. In other words, if
multiscaling lognormal models for Q and CA exist, then the
derived model for velocity is not itself multiscaling. Note
that this does not imply that a multiscaling model would not
be a good model for velocity if it were applied (i.e., fitted)
directly to velocity observations. In fact, our results

(discussed in more detail in the next section) indicate that
such a model would offer a good approximation apart from
the fact that velocity observations seem to have a lot of
scatter (see also the scatter in the (V, Q) relationships in
Figures 4 and 5) increasing thus the uncertainty of
parameter estimation in equation (5b).
[21] In section 3.2 we fit the lognormal multiscaling

model to Q and CA and test its validity. In addition, as an
independent test of the validity of our hypothesis, we
compare the derived statistical properties of V, i.e., computed
via equation (5a), with the corresponding quantities esti-
mated directly from the velocity observations.

3.2. Model Fitting and Hypothesis Testing

[22] A problem that arises with instantaneous observa-
tions is the fact that these observations do not usually
sample the full probability space of the variables of interest
and might not provide a good approximation of their true
PDFs. For this, it was decided to use long records of daily
discharges to obtain a representative PDF of instantaneous
Q and to derive the PDFs of V and CA from their power law
relationships with Q at each individual station. This problem
is schematically illustrated in Figure 10. For all the analysis
that follows, quantities from the fitted (to daily discharges)
PDFs of Q, and the derived PDFs for V and CA were used.

Table 1. (continued)

Station ID Contributing Area, km2

Cross-Sectional Area Mean Velocity

Exponent r Preexponent q Exponent m Preexponent k

7141780 3085.95 0.97 2.72 0.03 0.37
7144100 3207.62 0.90 2.40 0.10 0.42
6921760 3287.88 0.84 4.21 0.16 0.24
7144200 3435.45 0.92 2.16 0.08 0.46
7141900 3650.32 0.83 3.64 0.17 0.27
6867000 3888.50 0.83 2.26 0.17 0.44
7182250 4504.65 0.90 2.45 0.10 0.41
7152000 4812.73 0.90 1.69 0.10 0.59
7147800 4867.10 0.74 3.87 0.26 0.26
7243500 5224.36 0.98 1.53 0.02 0.65
7141200 5560.92 0.91 3.10 0.09 0.32
6872500 5993.26 0.88 2.43 0.12 0.41
7301500 6050.21 0.78 3.13 0.22 0.32
6884400 8605.44 0.82 2.39 0.18 0.42
7328100 12392.97 0.73 3.49 0.27 0.29

Average parameters 0.79 2.77 0.21 0.38

Table 2. Goodness of Fit Tests of the At-Station HG Relation-

ships Measured in Terms of Mean R2, Run Test Score, and

Autocorrelation Between the Residuals

HG
Factor L

Average
R2 in

lnL = f(lnQ)
at a Station

Analysis of Residuals

Average
Run Test
Statistics

Average
Over the Mean
of First 10 AC
Coefficients

W 0.756 0.100 0.136
CA 0.916 0.169 0.082
V 0.637 0.162 0.091
D 0.812 0.132 0.109
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The analysis was also done with hourly discharges, for all
stations for which hourly data were available, but no
significant differences were observed justifying the use of
the readily available daily flows.
[23] In order to proceed with the testing of our hypothesis

we need to estimate the eight parameters of the lognormal
multiscaling models. This estimation is not trivial and is
explained in detail below. Overall, a nonlinear optimization
procedure is performed in two steps.

[24] 1. Considered at a station, equation (2) (now with
a = 2 and wp = zp the pth standard normal quantile)
represents linear relationships in the form

lnQp Aj

� �
¼ hQ Aj

� �
þ mQ Aj

� �
zp ð6aÞ

lnCAp
Aj

� �
¼ hCA

Aj

� �
þ mCA

Aj

� �
zp ð6bÞ

Figure 5. Example plots of at-station HG for cross-sectional area and velocity for two stations with
areas of approximately 20 and 4000 km2. The bottom graphs show the empirical frequency of exceedance
plots of daily discharge (flow duration curves) for these two stations.

Figure 6. Plots of (left) at-station exponents for cross-sectional area and (right) velocity for the
85 stations in Oklahoma and Kansas versus contributing area. In the velocity plot we have superimposed
the data from Table 8 of Stall and Fok [1968] for the Sangamon River, Illinois.
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where Aj is the contributing area of the jth station and h(.)
and m(.) are parameters.
[25] Since Aj is a fixed value for any particular station, the

above relationships have constant parameters h(.) and m(.)

for each station. These parameters can be estimated inde-
pendently for each station based on the available measure-
ments of Q and CA (in fact, based on the lognormality
assumption, h(.) would be the mean and m(.) the standard
deviation of the normal distributions fitted to the logs of the
data). However, due to the sampling problem discussed
above, only the quantiles of Q were estimated directly from
observations (using records of at least 5 years of daily
streamflows). Then, the corresponding quantiles of CAwere
derived from the at-station HG between CA and Q fitted to
each station and the fitted PDF of Q.
[26] 2. The parameters of the lognormal multiscaling

models of CA and Q (both denoted below as L) are
estimated, by minimizing the sum of squares of the differ-
ences between the log of the empirical quantiles yp

L(Aj),
estimated from step 1, and the theoretical quantiles Lp(aL,
bL, gL, dL, Aj) defined by equation (2):

ss ¼ min
aL ;bL;gL;dLð Þ

X
j

X
p

ln yLp Aj

� �h
� lnLp aL; bL; gL; dL;Aj

� ��2
ð7Þ

for 10 different values of p (0.006, 0.026, 0.082, 0.202,
0.391, 0.609, 0.798, 0.918, 0.974 and 0.994). The idea
behind this optimization technique is to fit the whole surface
representing the PDFs of the two HG factors at all scales
instead of fitting only their means and variances. A Nelder-

Mead simplex method was used for the minimization
procedure. The estimated values of the lognormal multi-
scaling model parameters are given in Table 3.
[27] Our first step in the verification of the proposed

lognormal models is similar to the methodology suggested
by Gupta et al. [1994]. In Figure 11 we plot the values of
h(Aj) and m(Aj) computed from the lognormal multiscaling
models (as h(Aj) = aL + bLlnAj and m(Aj) = (gL + dLlnAj)

1/2)
for L = Q, CA, and derived for V as hV(Aj) = hQ(Aj) � hCA

(Aj)
and mV(Aj) = mQ(Aj) � mCA

(Aj) and compare them to the at-
station empirical values. The agreement between the em-
pirical and theoretical values is good with more scatter in
the slopes m(Aj) (i.e., the standard deviations of logs of at-
station Q, CA and V).
[28] To visually examine the goodness of fit of our model,

we use the relationships obtained at step 1 above to
calculate the pth quantiles Qp

j, CAp

j and Vp
j, at each station

j of area Aj for three different frequencies corresponding to
zp = 0, 1.5 and 2.9 (it is noted that these frequencies were
not among the 10 frequencies used for fitting the parame-
ters). In Figure 12 we plot these quantities versus the
logarithm of the contributing area Aj and compare
them with the theoretical curves computed from the
corresponding lognormal models for Q, CA and derived
for V for these three frequencies (i.e., equations 2a, b and
5a, respectively). The scatter is a bit higher for velocity,
while for cross-sectional area and discharge the agreement
between the model and the data is very good. Although the
change of slope from one frequency to another is not
drastic, it is noted that assuming constant slopes would
imply constant exponents in the at-station HG (resulting

Figure 7. Downstream hydraulic geometry for cross-sectional area and velocity for two frequencies of
exceedance F = 90% and F = 1% of discharge. Note that the slopes representing the downstream HG
exponents are different for different frequencies of discharge.

Figure 8. Example for log-log fits of two stable distributions.
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from simple scaling in CA and Q). In contrast, we have
observed dependency of these exponents on the contribut-
ing area (as presented in Figure 6).
[29] A primary indicator for multiscaling is the behavior of

the coefficient of variation (a normalized surrogate for
variability) at a station, CV(Aj) as a function of contributing
area [Smith, 1992;Gupta et al., 1994]. A constant CV implies
simple scaling (no change of variability with scale), while an
increasing (decreasing) CV with scale implies multiscaling
with increasing (decreasing) variability with scale (see also
Appendix A). In Figure 13 we plot CV(Aj) versus contribut-
ing area for CA, Q, and V as estimated directly from obser-
vations (points) and as predicted by the fitted multiscaling
models for Q, CA and the derived model for V (lines). The
coefficient of variation of discharge exhibits a lot of spread
with negligible increase within the whole range of data
(implying that a simple scaling model would have been a
good approximation). The trend in CVof cross-sectional area
is toward an increase with contributing area, while the
coefficient of variation of velocity shows decreasing trend
with scale. It is emphasized that the CV lines in Figure 13 are

not LS fitted to the CVs computed directly from observations
but rather derived from the multiscaling models which have
been LS fitted to 10 quantiles of CA and Q simultaneously as
explained above. The agreement of the corresponding multi-
scaling model computed CVs with the empirical at-station
CVs is satisfactory for the discharge and cross-sectional area,
while the derived CVs of the velocity are slightly over-
estimates, especially for large scales. It is noted that if simple
scaling models were hypothesized for CA and Q, a simple
scaling model would have resulted for V (see section 3.4),
implying a constant theoretical CV for V. As seen from
Figure 13, the empirical observations for V would not have
supported such a hypothesis.
[30] Finally, in Figure 14 we plot the first two moments

of the observations of CA, Q and V computed at each station
j versus the contributing area Aj and compare them to the
ones predicted by the corresponding lognormal multiscaling
models lnE[Ln(A)] = naL + 0.5n2gL + (nbL + 0.5n2dL)lnA
(see Appendix A and Gupta et al. [1994]), where L denotes
Q or CA and the moments of V derived through the multi-
scaling models of Q and CA. Again, the agreement is quite
good with more scatter in the plots of variances.

3.3. Generalized HG Based on Multiscaling

[31] Considering the equivalency of velocity, cross-
sectional area and discharge quantiles postulated by equa-
tion (4) we can solve equation (2) for zp and combine
equation (2a) with equation (2b) in order to derive scale-

Figure 9. Plot of the characteristic exponent a of the log-
Lévy distribution fitted to the daily discharge series of all
85 stations.

Figure 10. At-station lnV versus lnQ relationship and illustration of the fact that available instantaneous
observations of V and Q do not usually sample the full probability spaces of these variables and therefore
cannot provide good approximations of their true PDFs. Since the true PDF of instantaneous Q can be
well approximated by analysis of long-term records of hourly or daily discharge, a good approximation of
the true PDF of V can be obtained via a derived approach.

Table 3. Parameters of the Fitted Lognormal Multiscaling Models

Hydraulic
Geometry Factors

Estimated Model Parameters

a b g d

Simple Scaling
Cross-sectional area CA �3.1802 0.6124 1.1404 0.0000
Discharge Q �5.5428 0.7992 2.2134 0.0000

Multiscaling
Cross-sectional area CA �3.1802 0.6124 0.8404 0.1130
Discharge Q �5.5428 0.7992 2.6134 0.0012
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dependent at-station relationships between CA, V and Q
similar to the Leopold and Maddock [1953] power laws:

CAp
¼ FCA

Að ÞQYCA
Að Þ

p ð8aÞ

VP ¼ FV Að ÞQYV Að Þ
P ð8bÞ

where

YCA
Að Þ ¼

gCA
þ dCA

lnA

gQ þ dQ lnA

 !1=2

ð9aÞ

FCA
Að Þ ¼ exp aCA

þ bCA
lnA

� ��
� aQ þ bQ lnA
� �

YCA

�
ð9bÞ

YV Að Þ ¼ 1�YCA
Að Þ ð9cÞ

FV Að Þ ¼ 1=FCA
Að Þ ð9dÞ

[32] In Figure 15 the values of HG slopes and intercepts
empirically estimated from the at-station log-log linear plots
of V and CA versus discharge Q are plotted as a function of
contributing area for the 85 available stations. On the same
plots, the theoretical curves FCA

(A), YCA(A), FV(A), YV(A),
computed form equation (9) using the fitted parameters
from Table 3 have been plotted. We see that the empirical
values agree well with the theoretical values predicted by
equation (9), thus further validating the proposed multi-
scaling model for hydraulic geometry. The results of Stall
and Fok [1968] are also plotted for comparison. The
agreement between the two analyses is not surprising
considering the fact that the topographic and climatic
characteristics of the two regions are similar.

[33] Analytical derivation of the parameters of the down-
stream HG is not possible, but these can easily be evaluated
numerically. In Figure 16 we plot the downstream hydraulic
geometry for two different frequencies of exceedance 1 and
90%. The agreement between the empirical downstream HG
and the theoretically predicted HG from the corresponding
multiscaling models is quite good.
[34] Our conclusion from the above analysis is that the

proposed multiscaling formalism for HG explains well both
the at-station and downstream hydraulic geometry for cross-
sectional area, discharge and velocity. Having explicit
relationships of HG in terms of scale and frequency gives
the possibility of coupling channel hydraulics and the
topologic structure of the stream network into a routing
model such as the one described later in Section 4 and
Appendix C. In the next section, the multiscaling formalism
for HG is contrasted with the classical HG of Leopold and
Maddock [1953] and is shown that the classical HG results
as a special case of the proposed formalism.

3.4. Classical HG as a Special Case of the
Multiscaling Formalism

[35] It is noted that if the parameter d in equation (2) is
zero, then the multiscaling models for CA and Q collapse to
simple scaling and take the form:

lnCAp
Að Þ ¼ aCA

þ bCA
lnA

� �
þ ffiffiffiffiffiffiffi

gCA

p
zp; ð10aÞ

lnQp Að Þ ¼ aQ þ bQ lnA
� �

þ ffiffiffiffiffiffi
gQ

p
zp ð10bÞ

Figure 11. Plots of at-station estimates of hL(Aj) and mL(Aj) (where L denotes CA, Q or V) versus
contributing area Aj for each of the jth station. The points correspond to the empirical estimates of these
quantities (which are nothing but the means and standard deviations of the logs of CA, V and Q,
respectively). The solid lines are the theoretical quantities predicted by the multiscaling models i.e.,
hL(Aj) = aL + bLlnAj and mL(Aj) = (gL + dLlnAj)

1/2, while the dashed lines represent the derived estimates
for the velocity. It is seen that the fitted multiscaling models explain well the observed empirical trends.
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[36] Using the above equations, the HG for CA and V can
be derived as

CAp
¼ FCA

Að ÞQYCA
p ð11aÞ

Vp ¼ FV Að ÞQYV

p ð11bÞ

where

YCA
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gCA

=gQ

q
FCA

Að Þ ¼ exp aCA
þ bCA

lnA
� ��

� aQ þ bQ lnA
� �

YCA

� ð12aÞ

and

YV ¼ 1�YCA
FV Að Þ ¼ 1=FCA

Að Þ ð12bÞ

[37] It is noted that the exponent of the log-log linear
relationship of cross-sectional area and velocity with dis-
charge does not depend on scale but only the intercept. It is
therefore seen that simple scaling in CA and Q results in the
classical HG.
[38] Despite the fact that the parameters a and b are the

same for both multiscaling and simple scaling models, a
new separate fit is necessary for estimation of the parameter
g in the simple scaling model (once d has been set to zero).
It is interesting to note that the velocity HG exponent of
equation (12b) comes out to be 0.28 when the values of the
average exponents and preexponents (i.e., F = 0.21 and Y =
0.38) from Table 1 are used. This exponent is not far from
the value of m = 0.34 of Leopold and Maddock [1953] and
is comparable to the average value of the velocity HG
exponent for the region of study (see Table 1 for the average
value of m).

[39] It is also noted that since for a normal distribution the
probability of exceedance F in the interval between 0.1 and
0.9 can be approximated linearly by the standard normal
quantile zp, the Stall and Fok equations (1b) and (1c) can be
written as

lnCA F; Að Þ ¼ a00
CA

þ b00CA
zp þ g00CA

lnA ð13aÞ

lnQ F; Að Þ ¼ a00
Q þ b00Qzp þ g00Q lnA ð13bÞ

which are simple scaling models (variability does not
change with scale) and a special case of the multiscaling
models of equations (2a) and (2b). It is also noted that if in
the above equations the coefficients g00 are linear functions
of zp, a special form of multiscaling dependence arises, e.g.,

lnCAp
Að Þ ¼ a000

CA
þ b000CA

zp

� �
þ g000CA

þ d000CA
zp

� �
lnA

¼ ~a000
CA

þ ~b000CA
lnA

� �
þ ~g000CA

þ ~d000CA
lnA

� �
zp ð14Þ

This multiscaling dependence is a special case of equation (2)
for a = 1 (Cauchy distributions). Notice that in contrast to
equation (2), in the case of equations (13) and (14), i.e.,
simple scaling for CA and Q, a multiscaling model for V
also exists, such that its parameters can be expressed in
terms of the multiscaling parameters of CA and Q.

4. Classical Versus Generalized HG: Effect on
Hydrologic Response

[40] Since the time necessary for a particle to travel a
reach of unit length is inversely related to the mean velocity,
a possible consequence of scale-dependent HG exponents is
that the parameters of the hydrographs (e.g., peak flow, lag

Figure 12. Plot of the logarithms of CAp

j, Qp
j and Vp

j computed independently at each station j of area Aj

for two different frequencies (points) compared to the theoretically derived lines corresponding to the
lognormal multiscaling models (equations (2a), (2b), and (5a)).
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time, mean holding time etc.) of catchments with different
contributing areas will increase or decrease with different
rates for the same increase in the input. Empirical evidence
supports this hypothesis (e.g., see Minshall [1960] for peak
flows, Boyd et al. [1979] for lag times, and Wang et al.
[1981] for mean holding times), where the relationship

between the magnitude of the rainfall input I0 and the
hydrograph parameter P followed a power law in the form
P � I0

�a, with an exponent depending on contributing area
(scale). Such a trend is not reproduced by previous studies
coupling geomorphologic analyses and HG with constant
exponents [e.g., Saco and Kumar, 2002b, equation (22)].

Figure 13. Plot of at-station coefficients of variation (CV) of discharge (Q), cross-sectional area (CA),
and mean velocity (V) versus contributing area. Points indicate values estimated directly from
observations, solid lines show the theoretical curves predicted by the multiscaling models, and dashed
line represents the derived curve for velocity.

Figure 14. Comparison of first two moments of Q, CA, and V at a station to the theoretical moments
given by the relationship ln E[Ln(A)] = naL + 0.5n2gL + (nbL + 0.5n2dL)lnA, where L denotes CA or Q.
The theoretical moments of V are derived through the relationship lnV = lnQ � lnCA.
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We will demonstrate that the generalized HG we propose
reproduces this trend.
[41] Specifically, in this section we quantify hydrologic

response by assuming the classical HG (which as was
shown in the previous section results from simple scaling
in HG factors) versus the proposed generalized HG (which
results from multiscaling). The numerical experiment per-
formed to quantify the above is as follows. A forcing
(effective rainfall) is assumed to uniformly cover the whole
basin and have an intensity I over a short time interval Dt
(instantaneous pulse). The properties of the channel network
(see Appendix B) have been assumed to be (1) Horton’s
ratios RL = 2 and RA = 5 representing the average values
observed in natural river basins [see Rodriguez-Iturbe and

Rinaldo, 1997, chap. 7], (2) mean contributing area and
mean channel length of streams of order 1, A1 and L1 are
assumed respectively A1 = 0.02 km2 and L1 = 0.2 km and
are computed from the geomorphologic analysis of several
catchments in Kansas, and (3) tributary structure repre-
sented by Tokunaga [1966] type of tree generator with
parameters a = 1 and c = 2 (which results in bifurcation
ratio RB = 4).
[42] For routing, a network of geomorphologic nonlinear

reservoirs (similar in nature to the ones of Boyd et al.
[1979], Berod et al. [1995], Reggiani et al. [2001], and
Menabde and Sivapalan [2001]) is used and the routing
parameters have been derived in terms of the multiscaling
HG model parameters and the properties of the river

Figure 15. At-station (top) fitted exponents and (bottom) preexponents for cross-sectional area and
velocity (i.e., parameters of the fitted Leopold and Maddock’s [1953] power laws) for the 85 stations
versus their contributing area (notice that the top plots are the same as Figure 6), but now the theoretical
curves FCA

(A), FV(A), YCA
(A) and YV(A) derived from the proposed multiscaling model (equations (9))

have also been plotted. The good agreement further verifies that the proposed generalized model for HG
nicely explains the empirical trends.

Figure 16. Downstream HG for two different frequencies of exceedance F of streamflow Q. The points
represent empirical values, the solid lines are the theoretically derived curves from the corresponding
lognormal multiscaling models for discharge and cross-sectional area (left panel), and the dashed lines
represent the derived curves for velocity (right panel).
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network (see Appendix C). The developed routing scheme
is termed Geomorphologic Nonlinear Reservoirs in Net-
work and denoted as GNRN. Although simple, this lumped
scheme is suitable for our comparative analysis since its
storage-discharge relationships, being explicit functions of
the HG, allow a relative comparison of hydrologic response
under the assumption of simple scaling HG (which results in
constant exponents of storage-discharge relationships with
scale) versus multiscaling HG (which results in scale-
dependent storage-discharge exponents).
[43] Pulses of varying intensity have been routed through

the basin and the hydrographs resulting at the end of basins
of different orders (and therefore different contributing
areas) have been computed. These hydrographs have been
parameterized in terms of some key parameters, such as
peak discharge Qpk, time to the peak Tpk, and the first three
central moments of the synthetic hydrographs in order to
characterize the shape of the response functions. (Notice
that, due to the nonlinear nature of GNRN, we are not
allowed to consider the response of a catchment to a unit
pulse as a travel time distribution; consequently, the central
moments of the response function can only be interpreted as
descriptors of the hydrograph’s geometry but not as
moments of the travel time). The numerical experiment
has been repeated for several rainfall intensities I and the
dependence of the hydrograph parameters on the rainfall
intensity and contributing area A has been quantified.
[44] It was found that in both cases of classical and

generalized HG, the hydrograph parameters versus effective
rainfall intensity can be well approximated by power laws
for all order basins. An example of such power laws is
demonstrated in Figure 17 for time to peak Tpk and
skewness Sk (as the ratio of the second and third central
moments Sk also follows a power law with I) for two
hypothetical catchments of orders 3 and 10 and also for
classical versus generalized HG. The power law approx-
imations are in general nonlinear in the log-log domain, but

with small curvature still allowing a good log-log linear
approximation.
[45] It is noted that even in the simple case of a linear

response the emergence of the above power laws cannot be
derived analytically. This is due to the fact that basin
response is expressed in terms of the sum of exponential
functions and the higher-order moments are expressed as
the sum of power law functions (for details, see Rodriguez-
Iturbe and Valdes [1979], Rodriguez-Iturbe and Rinaldo
[1997], and Saco and Kumar [2002a, 2002b]). In the case of
GNRN, due to the nonlinear nature of this routing scheme,
derivation of the emerging power laws from the theoretical
point of view is even more intractable. Nevertheless, the
parameters of these approximate power laws are useful
‘‘measures’’ of the dependence of hydrologic response on
scale and rainfall input (as suggested byWang et al. [1981]),
and we will utilize them in our analysis. We assume the
following parameterizations:

Peak rate Qpk ¼ Ih1 Að Þ ð15aÞ

Time to the peak Tpk ¼ Ih2 Að Þ ð15bÞ

Fist central moment Tm ¼ Ih3 Að Þ ð15cÞ

Skewness Sk ¼ Ih4 Að Þ ð15dÞ

[46] Figure 18 shows the exponents h1(A), h2(A), h3(A)
and h4(A) as functions of contributing area A for both
simple and multiscaling HG models. Clearly, the range in
which the exponents vary with contributing area is much
wider for the routing based on multiscaling HG, thus
suggesting significant nonlinear effects in smaller basins.

Figure 17. Example of power laws between some of the hydrograph parameters and the excess rainfall
intensity.

W06302 DODOVAND FOUFOULA-GEORGIOU: GENERALIZED HYDRAULIC GEOMETRY

15 of 22

W06302



In other words, the hydrologic response is seen to be
significantly influenced by the assumption about HG espe-
cially in small basins in which the exponents h(.)(A) show
significant differences between classical and generalized
HG. It is interesting also to note that the product QpkTpk,
which under the assumption of constant velocity has been
shown to be a scale-invariant quantity [e.g., see Rodriguez-
Iturbe and Valdes, 1979] is shown here to depend on scale
as QpkTpk = Ih1(A)+h2(A) for both classical and generalized
HG. The exponent [h1(A) + h2(A)] varies from approxi-
mately 0.8 for small basins to approximately 0.2 for large
basins. Interestingly, the variation of this exponent with
scale is not dependent on the nature of HG (that is, it
achieves the same values for either simple or generalized
HG), although each term of the sum, i.e., h1(A) and h2(A)
changes differently with scale in each case.
[47] It is noted that the above results were obtained under

the assumption of spatially uniform effective rainfall. Future
work should address the issues of spatially variable rainfall.
It is possible that the spatial inhomogeneity of effective
rainfall, once coupled with the spatial inhomogeneity of
channel HG, will dampen the dependence of the degree of
nonlinearity on scale on the average (ensemble average), but
not in terms of variance. Such numerical experiments need
to be performed under realistic scenarios of rainfall vari-
ability along the lines of Menabde and Sivapalan [2001].

5. Future Extension

[48] Although the lognormal multiscaling model of HG
proposed in this paper is a good working model to develop
understanding of spatial inhomogeneities and scale
frequency dependence of hydrologic response, there are a
few observations that suggest some possible extensions
worth considering in the future. These observations are
(1) there is significant uncertainty in HG relationships in
terms of considerable scatter in the log-log plots, (2) a single
power law cannot reproduce the change in slope and
sometimes discontinuities in HG near bank-full conditions
[e.g., see Pilgrim, 1976; Wong and Laurenson, 1984; Bates,

1990], and (3) a mixed distribution might be needed to
represent discharges, especially for both below and above
bank-full conditions [e.g., see Singh and Sinclair, 1972;
Leytham, 1984; LeBoutillier and Waylen, 1993]. Here we
propose an extension of the lognormal multiscaling model
to a mixed bivariate lognormal multiscaling model which
can accommodate the above considerations.
[49] The treatment of uncertainty in hydraulic geometry

comes very naturally in the proposed multiscaling frame-
work by extending it to account for the covariance between
lnQ and lnCA (or lnV). In this context, a single at-station
power law relationship can be represented by introducing
a bivariate Gaussian distribution of lnCA and lnQ or (lnV
and lnQ) and considering the conditional expectation
E[lnCAjlnQ] for a wide range of possible discharges. Fur-
thermore, assuming that the covariances of lnQ and lnCA (or
lnV) are linearly dependent on the log of contributing area
(as it is for their variances), we can extend our multiscaling
framework to a mixed bivariate multiscaling lognormal
model in the form:

Y ¼ pY 1 þ 1� pð ÞY 2 ð16Þ

[50] In equation (16)p is the mixing proportion (for
example the percentage of time in which the discharge is
less than bank-full), and Y1 and Y2 are bivariate multiscaling
models in the form:

Y � N Ma þMb lnA;2a þ2B lnA
� �

ð17Þ

where

Y ¼ lnQ ln+½ �T;MA ¼ a1;Qa1;L
� �T

;Mb ¼ b1;Qb1;L
� �T

;

2A ¼
a2;Q a2;QL

a2;QL a2;L

� �
;2b ¼

b2;Q b2;QL
b2;QL b2;L

" #

and am,(.) is the intercept and bm,(.) the slope of the linear fit
of mth-order moments of Q and CA (or V) versus lnA (CA

and V are denoted as L and the coefficients corresponding to
the covariance are a2,QL and b2,QL).

Figure 18. Exponents of hydrologic response functions (equations (15)) versus scale.

16 of 22

W06302 DODOVAND FOUFOULA-GEORGIOU: GENERALIZED HYDRAULIC GEOMETRY W06302



[51] Figure 19 shows several examples of bivariate Gauss-
ian mixture models fitted (through an expectation maximi-
zation algorithm [e.g., seeMcLachlan and Krishnan, 1997])
to at-station data for mean velocity and discharge for two
basins of areas 14 km2 and 12,700 km2. It is noted that the
previously considered lognormal multiscaling framework
simply assumed that the log-log plots of velocity versus
discharge (right-hand panels in Figure 19) could be
approximated by a single power law relationship. Although
the single power law might not be a bad overall ap-
proximation, the systematic deviations at high discharges
are notable.
[52] The proposed extended model (equations (16) and

(17)) has been fitted to our data from all 85 stations and
the exponent of the obtained conditional expectation
exp{E[lnVjlnQ]} for a wide range of discharges has been
used to represent the at-station HG. Figure 20 shows
the computed at-station HG for 2 basins of size 10 and
10,000 km2 and also the downstream HG for two different
frequencies of discharge. The model shows behavior similar
to that observed in many empirical studies [e.g., see
Carlston, 1969; Pilgrim, 1976; Wong and Laurenson,
1984], i.e., close to log-log linear relationship for down-
stream HG (right panels in Figure 20), and two log-log
linear relationships for at-station HG with a proper
treatment of the transition in between below and above
bank-full conditions.
[53] The proposed framework is expected to provide a

more reliable representation of at-station and downstream
HG and is attractive for analysis of the hydrologic response of
basins for both below and above bank-full conditions.
Furthermore, it provides a stochastic representation of HG,
which explicitly acknowledges the uncertainty in these
relationships. Another important feature of the proposed
extension is that the full complexity of the flood propagation
in a stream network is represented with a relatively parsimo-

nious model. This could allow regionalization and even
parameter transfer between regions with similar climatic,
topographic and geologic conditions.

6. Summary and Conclusions

[54] Empirical evidence has been presented that the
exponents of at-station HG systematically depend on
scale and the exponents of downstream HG on frequency.
To explain this empirical finding, a multiscaling formal-
ism within which to model and interpret HG has been
proposed. Specifically, a lognormal multiscaling model
has been suggested for representing hydraulic geometry
factors of a stream channel (discharge Q and cross-
sectional area CA). This multiscaling model has then been
used to analytically derive revised at-station hydraulic
geometry (HG, i.e., relationships between CA and Q and V
and Q) whose coefficients are explicit functions of scale
(contributing area). It has also been used to numerically
derive revised downstream HG, as an analytical derivation
in terms of the multiscaling model parameters is impossible
in this case. The generalized HG model has been fitted to
85 gauging stations in Oklahoma and Kansas, and has been
shown to explain, to a good degree, the empirical trends.
[55] An important consequence of scale-dependent at-

station HG is the implied spatial heterogeneity in catchment
hydrologic response. This is because different parts of the
basin will respond to the same rainfall forcing in ways that
depend on their location (and thus the area drained above).
Via a network of geomorphologic nonlinear reservoirs rout-
ing model, we demonstrated the effect of spatially uniform
channel response (implied by the classical HG whose expo-
nents remain constant with scale) and the scale-dependent
channel response (resulting from the proposed generalized
HG whose exponents are functions of scale). Important
differences on the hydrologic response function (time to

Figure 19. Representation of at-station HG as a mixture of two bivariate Gaussians with contributions
99 and 1%, respectively. Two different size basins are considered: small (’14 km2) and large
(’12,700 km2).
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peak, peak discharge and skewness of the hydrograph) are
noted prompting the need to further study the physical origin
of these scale dependencies especially for small basins.
[56] In their seminal work, Leopold and Maddock [1953]

provided important quantifications of how stream hydrau-
lics and morphometric properties relate to discharge in an
average sense, i.e., by ignoring much of the scattering
around the proposed power laws, and capturing only general
trends. They commented that ‘‘further work will be
necessary to explain the details of deviations from these
trends’’ [Leopold and Maddock, 1953, p. 10]. We see our
work as providing an explanation of some of these
deviations by attributing them to systematic dependencies
on scale and frequency. As such, the proposed generalized
HG (which includes the classical HG as a special case)
makes a small step toward the problem of quantifying the
scale-dependent (and thus spatially heterogeneous) response
of catchments. An important subsequent problem is to
understand the physical origin of this scale dependence.
Some thoughts on this problem are offered by B. A. Dodov
and E. Foufoula-Georgiou (Generalized hydraulic geome-
try: Insights based on instability analysis and a physical
model, submitted to Water Resources Research, 2004)
based on fluvial instability analysis and a physical model of
meandering rivers.

Appendix A: Review of the Multiscaling
Formalism

[57] We present a brief review of the multiscaling theory
following Gupta and Waymire [1990] and Gupta et al.
[1994]. A random field {X(A)} parameterized by a scale
parameter A, e.g., drainage area, is said to exhibit
multiscaling if it satisfies the following equality under a
change of scale

X lAð Þ ¼ G lð ÞX Að Þ ðA1Þ

where l > 0 is a dimensionless scalar, e.g., the ratio of
drainage areas, G(l) is a positive random or nonrandom
function and = denotes equality in probability distributions.
Equation (A1) implies that the probability distribution of
X(lA) can be determined from that of X(A) provided that the
function G(l) is known.
[58] Simple scaling is said to hold when G(l) is a non-

random function. In this case, it can be shown that G(l) =
lQ, and that the quantiles Xp(A), defined as P[X(A) >
Xp(A)] = p, of {X(A)} relate to A in a power law form, i.e.,

Xp Að Þ ¼ c pð ÞAQ; ðA2Þ

where c and Q are parameters independent of scale [see
Gupta and Waymire, 1990]. Simple scaling results in a
coefficient of variation (CV) which is independent of scale.
Regarding CV as a measure of spatial variability, simple
scaling implies spatial homogeneity in terms of a constant
variability with scale.
[59] Multiscaling is said to hold when G(l) is a

random function. Unlike simple scaling, multiscaling
admits two representations of G(l) corresponding to
whether l > 1 or l < 1. As has been shown by Gupta
and Waymire [1990], these two cases correspond, respec-
tively, to an increasing or decreasing CV with scale. In
either case, it can be shown that the random function G(l)
can be expressed in terms of scale l and a Lévy stable
random variable, wp. Also, the quantiles of the process can
be written as

lnXp Að Þ ¼ a� b lnAð Þ þ g� d lnAð Þ1=awp; l > or l < 1

ðA3Þ

where a, b, g and d are appropriately specified parameters
[see Gupta and Waymire, 1990] and wp denotes the pth
quantile of �W, where W is a Lévy-stable random variable

Figure 20. An illustrative example showing how a mixed bivariate lognormal multiscaling model can
be used to represent a general relationship V = f(Q): (left) at-station HG for different contributing areas
and (right) downstream HG for different frequencies of discharge.
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with characteristic exponent 0 < a � 2. The special case of
a = 2 corresponds to the so-called lognormal multiscaling
model.
[60] Gupta and Waymire [1990] show that in the case of

decreasing CV with increasing scale (l < 1), a limiting
approximation of equation (A3) can be obtained for large
scales, which brings the quantiles in a log-log linear form

Xp Að Þ ¼ c pð ÞAQ pð Þ ðA4Þ

where the exponents and intercepts are functions of the
quantile and the other parameters of the model. In the case
of increasing CV with scale (l > 1), no such approximation
can be obtained for equation (A3), and the quantiles scale
with area in a complex, non log-log linear way.
[61] It is important to mention that the multiscaling

theory, as presented above, was developed by Gupta and
Waymire [1990] in the context of scaling in ‘‘floods’’
(defined as the highest peak discharges recorded each year).
Here we invoke the multiscaling theory for channel
hydraulic factors such as instantaneous cross-sectional area,
velocity etc. and for instantaneous or daily discharges which
are of much lower frequency than maximum annual floods.
Therefore important differences arise in the interpretation of
scaling and these are discussed below. In the study of Gupta
and Waymire [1990] the two solutions of the scaling
function G(l) were studied in the context of interpreting the
empirical observation that the CV of floods increases with
scale A up to some critical scale Ac (i.e., for A: A

0 < A < Ac)
and then decreases (i.e., for: Ac < A < A1). Therefore the
cases of l > 1 (l = A/A0) and l < 1 (l = A/A1) were given
the interpretation of ‘‘small’’ and ‘‘large’’ basins, relatively
to the critical basin at which scaling breaks.
[62] In the context that we use multiscaling for, no scaling

break is observed and increasing or decreasing variability
with increasing scale (l > 1 or l < 1, respectively) is
observed within the same range of scales depending on the
variable analyzed. For example, the empirical coefficient of
variation of cross-sectional areas shows an increase with
scale whereas the coefficient of variation for velocities
shows a decrease with scale, both within the same range
of scales, 10 to 104 km2.

Appendix B: Ordering and Mean Self-Similarity
of Stream Networks

[63] Stream network ordering of a drainage network can
be achieved either starting from the outlet and moving
upstream or starting from each source and moving down-
stream. The most widely used scheme of ordering (utilized
in this work) belongs to the second group and was proposed
by Horton [1945] and revised by Strahler [1952, 1957]. The
analysis of the stream network proceeds as follows
[Rodriguez-Iturbe and Rinaldo, 1997]: (1) channels that
originate at a source (have no tributaries) are defined to be
first-order streams; (2) when two streams of order w meet, a
stream of order w + 1 is created; (3) when two streams of
different order meet, the channel segment immediately
downstream is assigned the higher order of the two
combining streams.
[64] For almost any geometric or topological quantity Xw

of streams of order w (e.g., total number, length, contribut-

ing area, number of side tributaries of order less than w, etc.)
a power law holds in the form:

Xwh i / Rw
X ðB1Þ

where h.i denotes ensemble average and the constant RX is
respectively referred to as stream number (or bifurcation)
ratio, length ratio, etc. Empirical laws of this generic form
are known collectively as ‘‘Horton’s laws’’, although they
are not all due to Horton [e.g., see Schumm [1956] for the
law of basin areas).
[65] Peckham [1995a, 1995b], on the basis of previous

work of Tokunaga [1966, 1978], introduced a general
definition of topologic mean self-similarity for a class of
stream network trees where every stream of order w has b �
2 upstream tributaries of order (w � 1) and on the average
Tw,k side tributaries of order k, (w 2 {2, . . ., W}, k 2 {1, . . .,
w � 1} and W denotes the order of the network). The
number of side tributaries Tw,k can be arranged in a square,
lower triangular matrix

T ¼

T2;1 0 0 � � � 0

T3;1 T3;2 0 � � � 0

T4;1 T4;2 T4;3 � � � 0

..

. ..
. ..

. . .
. ..

.

TW;1 TW;2 TW;3 � � � TW;W�1

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

ðB2Þ

[66] Topologically mean self-similar trees are then de-
fined as the subclass of trees with generators that satisfy the
constraint that Tw,w�k = Tk, where Tk is a number that
depends on k but not w, and gives the number of side
tributaries of order (w � k) for every w > k. With several
examples, Peckham [1995a] showed that this constraint
holds fairly well for natural river networks.
[67] For binary trees, two streams of order w must head

each stream of order (w + 1). However, streams of order w
also appear as side tributaries to any stream of order greater
than w. These facts imply that if Nw is the number of all
streams of order w, the following recursive formula must
hold [Peckham, 1995a, 1995b]:

Nw ¼ 2Nwþ1 þ
XW�w

k¼1

TkNwþk ðB3Þ

[68] Therefore the sequence {Nw} for a binary tree is
uniquely determined once the sequence {Tk} has been
specified.

Appendix C: Derivation of Geomorphologic
Nonlinear Reservoirs in Network (GNRN)
Runoff Routing Model in Terms of HG and
Network Topology

C1. Catchment Representation in Terms
of Nonlinear Reservoirs

[69] The purpose of this representation is to define a
network of nonlinear reservoirs (which form conceptual
building blocks for runoff routing) in terms of Strahler
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stream ordering (see Appendix B for background). This
formulation will allow us to combine the developed statis-
tical model for hydraulic geometry and the stream network
organization, in order to derive the parameters of the
nonlinear reservoirs.
[70] Our definition of ‘‘Geomorphologic Nonlinear Res-

ervoirs in Network’’ (GNRN) is based on the following
assumptions. (1) All channels of particular order w in a
catchment of order W represent a reservoir of order w,
denoted as Rw. (2) At any particular instant in time, the
mean velocity is the same in all channels of order w and any
input into reservoir of order w is instantaneously redis-
tributed uniformly among all channels of order w. (3) The
flow from any reservoir Rk to any other reservoir Rw, k < w,
k = 1, . . ., W � 1, w = 2, . . ., W is given as

Qk;w ¼ pk;wQ
tot
k ðC1Þ

where Qk
tot is the total output from Rk and pk,w is the

proportion of all channels of order k draining to channels of
order w. (4) Differences between contributing areas of all
channels of order w are negligible. (5) Equations (2a) and
(2b) are assumed to represent distributions of instantaneous
quantities.

C2. Derivation of the Parameters of the Nonlinear
Reservoirs in Terms of HG

[71] Under assumption 4 we can rewrite (2a) and (2b) in
the form

lnCAp
Aw
� �

¼ aCA
þ bCA

lnAw þ gCA
þ dCA

lnAw
� �1=2

zp ðC2aÞ

lnQp Aw
� �

¼ aQ þ bQ lnAw þ gQ þ dQ lnAw
� �1=2

zp ðC2bÞ

where Aw is the average contributing area of channels of
order w.
[72] Under assumptions 1, 2, 4, and 5, equation (2) can be

used to represent the logarithms of instantaneous storage
and outflow from a reservoir of order w as:

ln Sw;p Aw
� �

¼ aCA
þ ln Lw þ lnNw þ bCA

lnAw

þ gCA
þ dCA

lnAw
� �1=2

zp ðC3aÞ

lnQw;p Aw
� �

¼ aQ þ lnNw þ bQ lnAw þ gQ þ dQ lnAw
� �1=2

zp

ðC3bÞ

where Lw and Nw are respectively the average length and the
total number of streams of order w.
[73] Solving equations (C3) for zp (this is allowed by

equation (4)) and combining them, gives a power law
relationship between the outflow and storage in a reservoir
of order w

Qw ¼ FwS
Yw
w ðC4aÞ

where

Yw ¼ Y�1
CA

Aw
� �

¼
gQ þ dQ lnAw

gCA
þ dCA

lnAw

 !1=2

ðC4bÞ

and

Fw ¼ Nw exp aQ þ bQ lnAw
�

� aCA
þ ln Lw þ lnNw þ bCA

lnAw
� �

Yw
�

ðC4cÞ

[74] Thus we derived the parameters Fw and Yw of the
nonlinear reservoir of order w in terms of the parameters of
the proposed multiscaling models for Q and CA and the
channel network structure. Since equation (C4a) is assumed
to represent instantaneous quantities, it can be used as a
momentum conservation equation for all channels of order
w. Coupled with a continuity equation it completes a closed
set of equations for runoff routing.

C3. Routing Procedure

[75] The routing procedure is based on the continuity
equation dSw/dt = Iw(t) � Qw(t) and the outflow-storage
relationship Qw = FwSw

Yw serving as the momentum
equation. Iw(t) is the total input to a reservoir of order w,
which under assumption <3> is given by:

Iw tð Þ ¼ Ew tð Þ þ
Xw�1

k¼1

pk;wFkSk tð ÞYk ; for w > 1 ðC5aÞ

and by

Iw tð Þ ¼ Ew tð Þ; for w ¼ 1 ðC5bÞ

where Ew(t) denotes any external input: rainfall excess,
snowmelt, drainage from deep aquifers, etc. contributing to
the storage of the wth reservoir at moment t and pk,w is the
proportion of all channels of order k draining to channels of
order w. The output from the wth reservoir at moment t is
given as Qw(t) = FwS(t)w

Yw.
[76] Combining the continuity and the outflow-storage

equations in discrete form and assuming that the input and
the output from any reservoir change linearly during the
time interval Dt, gives:

Sw;nþ1 ¼ Sw;n þ Dt ~Jw � FwS
Yw
w;nþ1

� �
=2 ðC6aÞ

where

~Jw ¼ Ew;nþ1 þ Ew;n þ
Xw�1

k¼1

pk;wFk SYk

k;nþ1 þ SYk

k;n

� �
� FwS

Yw
w;n

for w > 1 ðC6bÞ

and

~Jw ¼ Ew;nþ1 þ Ew;n � FwS
Yw
w;n for w ¼ 1 ðC7Þ

[77] Equation (C6) and (C7) are solved iteratively for all
storages of order 1 to W and the output at the outlet of the
basin of order W is QW(t) = FWSW(t)

YW.

C4. Formulation of GNRN in Terms of HG for Basins
With Mean Self-Similar Network Topology

[78] All rooted trees contain exactly one stream of the
highest-order W so that NW = 1. Therefore incorporating
equation (B3) the sequence {Nw} and respectively the
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Horton’s ratio of numbers RB is uniquely determined for a
binary tree, once the sequence {Tk} has been specified. As a
generator of {Tk} we accept Tokunaga’s model [Tokunaga,
1966, 1978] which represents a class of trees satisfying the
constraints Tw,w�k = Tk and Tk+1/Tk = c for all k, where c is a
constant. Such a tree has a generator Tk = ack�1 and
bifurcation ratio given as

RB ¼
2þ aþ cð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ aþ cð Þ2�8c

q
2

ðC8Þ

where a is a parameter.
[79] Assuming that the Horton’s laws of stream numbers

Nw = RB
(W�w), lengths Lw = L1RL

(w�1) and areas Aw = A1RA
(w�1)

hold exactly we can rewrite equation (C4) as

Yw ¼
gQ þ dQ lnA1 þ w� 1ð Þ lnRA

� �
gCA

þ dCA
lnA1 þ w� 1ð Þ lnRA

� � ðC9aÞ

Fw ¼ NwFw ðC9bÞ

Fw ¼ exp aQ þ bQ lnA1 þ w� 1ð Þ lnRA

� ��
� aCA

þ ln L1 þ w� 1ð Þ lnRL

�
þ W� wð Þ lnRB

þ bCA
lnA1

�
þ w� 1ð Þ lnRA

�
Yw
�

ðC9cÞ

[80] According to equation (B3) for a binary tree the
number of streams of order k that drain into streams of order
w is given by nk,w = 2Nw + Tw�kNw for k = w � 1, and nk,w =
Tw�kNw otherwise. Since pk,w = nk,w/Nk it follows that
equation (C6b) can be rewritten as

~Jw ¼ Enþ1
w þ En

w þ
Xw�1

k¼1

nk;wFk SYk

k;nþ1 þ SYk

k;n

� �
� FwS

Yw
w;n ðC10Þ

[81] Thus both reservoir parameters and the routing
procedure can be explained by means of network topology
through the generator of {Tk} and Horton’s laws’
parameters RA, RL, A1 and L1. Under the above formulation
the proposed routing model can be easily modified for
different types of tree structures in order to analyze the
integral effect of network organization and scale-dependent
HG on catchment’s hydrologic response.
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