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Abstract

We revisit the multifractal analysis of high resolution temporal rainfall using the wavelet transform modulus m
(WTMM) method. Specifically, we employ a cumulant analysis of the logarithm of the WTMM coefficients to estima
scaling exponent spectrumτ (q) and the spectrum of singularitiesD(h). We document that rainfall intensity fluctuations exhi
multifractality from scales of the order of 4–5 minutes up to the storm-pulse duration of 1–2 hours. We also establish lon
dependence consistent with that of a multiplicative cascade.
 2005 Elsevier B.V. All rights reserved.

Keywords: Wavelets; Scaling; Precipitation; Multifractal; Multiplicative cascades
r-
tud-
ting
.
is or
ing
ns
to

nts

es-
a-

).
ant
re
nts

n-
r

1. Introduction

High resolution temporal rainfall (sampling inte
val of the order of seconds to minutes) has been s
ied by many researchers for the purpose of extrac
its scaling characteristics (e.g.,[1–13]; among others)
Most of these studies have used spectral analys
traditional multifractal analysis based on comput
higher order moments of the data or their fluctuatio
(e.g., box counting or structure function analysis)
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E-mail address: venu@msi.umn.edu(Venugopal V.).
0375-9601/$ – see front matter 2005 Elsevier B.V. All rights reserved
doi:10.1016/j.physleta.2005.08.064
estimate the scaling exponent functionτ(q) and, via a
Legendre transform, the singularity spectrumD(h). In
this Letter, motivated by the most recent developme
in multifractal analysis of turbulence signals (e.g.,[14,
15]), we re-examine the scaling structure of high r
olution temporal rainfall using wavelet-based estim
tors (see also[16] for application to cloud structure
Specifically, we use a one- and two-point cumul
analysis of the WTMM magnitude to infer the natu
of multifractality and estimate the scaling expone
of high resolution temporal rainfall.

It is noted that the typical multifractal analysis co
sists of estimating theτ(q) curve (see next section fo
.
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definitions) by taking moments of the data (or their
crements) of increasingly higher orderq, plotting log-
moment versus log-scale, and estimating the slope
these log–log linear curves. This is typically done
several moments including fractional moments, e
q = 0.2 up to 5.0 (or higher). The slopes of the
lines are then plotted versus order of moment an
nonlinear curve is fitted to that plot to estimate t
τ(q) curve. It is easy to see that one has to res
to higher order moments to capture the nonlinea
of the τ(q) curve (note that a linear approximatio
would imply the presence of monofractality in th
data). Taking higher order moments of small data s
(say of the order of a few hundred points) is pro
lematic and renders the estimation of theτ(q) curve
unreliable. Once theτ(q) curve is estimated, a Legen
dre transform is applied to estimate theD(h) curve,
i.e.,D(h) = minq [qh − τ(q)]. Here it is noted that by
using positive order moments only (q > 0), one has ac
cess to the increasing part of theD(h) spectrum only
(recall that derivatives of theD(h) curve are the mo
ment ordersq, i.e., dD(h)/dh = q; seeFig. 1). This
makes it hard to accurately define the whole spect
of singularities and especially the maximum Höld
exponenthmax. It is also noted that taking negativ
moments (q < 0) is not always feasible. For exam
ple, when working with the increments of the da
i.e., when using the so-called structure function
proach, the probability density function (PDF) of t
increments is centered close to zero and taking n
tive moments creates divergences as values very c
to zero are raised to negative powers[17]. Note also

Fig. 1. Generic shape of theD(h) singularity spectrum considere
as the Legendre transform ofτ(q).
that the structure function method fails to provide
timate of the fractal dimensionDf = −τ(q = 0) of
the support of singularities of the signal under stu
All of the above shortcomings of the standard mu
fractal formalism introduce intrinsic insufficiencies
unraveling the true multifractal nature of rainfall flu
tuations and may lead to misleading inferences.
methodology proposed herein does not suffer from
above shortcomings and has been documented in
turbulence literature (e.g., see[14,15]) to yield accu-
rate and robust estimates of the multifractal spectr

The innovations of the proposed methodolo
(which will become more apparent after the rea
has read the theory behind the methodology prese
in the next section; see also the review article
[18]) can be summarized as follows: (1) by usi
a wavelet-based formalism, wavelets of increasin
higher order can be easily employed to remove n
stationarities in the signal and define via analysis
opposed to a priori specification) what are the rain
“fluctuations” whose multifractal properties we se
to characterize; (2) by using wavelets of increasin
higher order we have access to the whole range of
gularities as this range might not be known a priori
is noted that by employing a structure function ana
sis, the maximum singularity exponent that can be
tected is 1 and therefore we might bias the estimate
the intermittency coefficient and spectrum of singul
ities if singularities of Hölder exponenth > 1 end up
being present in the signal); (3) by using the wave
transform modulus maxima (WTMM), i.e., the ma
ima lines only instead of the whole continuous wave
transform (CWT), a more efficient and robust estim
of the singularity spectrum can be obtained; (4) by
ing a cumulant analysis of the WTMM magnitud
[15], one can directly estimate from their behav
as a function of scale, the singularity spectrumD(h);
(5) the coefficients of the polynomial expansion of t
scaling exponent functionτ(q) can be directly com
puted and do not require taking higher order mome
of the data.

In the next section, a brief review of the wavel
based multifractal analysis is presented and refere
to the original publications are provided for proo
and details. Section3 presents the results of applyin
the methodology to the analysis of three high re
lution temporal rainfall series, each composed of
sampling of rainfall intensity for several hours via
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optical raingauge. These series have been anal
by others in the literature and provide a benchm
for comparison of methodologies and associated
ferences. Finally conclusions and interpretations
given in Section4.

2. Methodology overview

Let f (x) be a function whose multifractal chara
teristics we wish to estimate. The local singularity
f (x) at pointx0 is characterized by the Hölder exp
nenth(x0) defined as

(1)
∣∣f (x) − Pn(x − x0)

∣∣ � C|x − x0|h(x0).

That is,h(x0) is the largest exponent such that the
exists a polynomialPn(x) of degreen that satisfies
the above condition in the neighborhood ofx0. (Note
that h(x0) in (1) can be larger than 1, characterizi
thus singularities in the higher order derivatives of
function, i.e.,n < h < n + 1 implies that thenth order
derivative off (x) is singular.) Small values ofh(x0)

imply stronger singularities. The spectrum of Höld
exponents, or singularity spectrumD(h), is defined as

(2)D(h) = dH

(
x,h(x) = h

)
,

i.e., as the Hausdorff dimensiondH of the set of all
pointsx such thath(x) = h.

The local singularity off (x) at point x0 can
be characterized by the behavior of the wavelet
efficients as they change with scalea (see [18]).
Specifically, defining the continuous wavelet tran
form (CWT) of f (x) using the analyzing waveletψ
(e.g.,[19,20]), as

Tψ [f ](b, a) = 1

|a|
∫

f (x)ψ

(
x − b

a

)
dx,

(3)a > 0, b ∈ R,

it can be shown that

(4)Tψ [f ](x0, a) = O
(
ah(x0)

)
, a → 0,

provided that the order of the analyzing waveletnψ

(i.e., number of vanishing moments) is larger than
strengthh(x0) of the singularity located atx0. It is
noted that to unravel all singularities inf (x), nψ must
be greater than the exponent of the weakest singu
ities present in the signal, i.e.,nψ > hmax. This is the
reason that if the analyzing wavelet is chosen to h
nψ = 1, i.e., similar to the structure function in a po
man’s wavelet sense, no singularitiesh > 1 can ever
be detected, biasing thus the estimate ofD(h) if sin-
gularitiesh > 1 are present in the signal[17]. Without
knowing a priori what singularities are present in t
signal, the approach we propose and use in this w
is to use analyzing wavelets withnψ = 1,2,3, . . . and
adopt that wavelet for which robust estimates ofD(h)

are obtained. It is noted that this particular wave
defines also the “fluctuations” of the process wh
multifractal properties we seek to characterize. Tha
the fluctuations superimposed on the underlying lo
frequency component (filtered out via the wavel
show scaling, while the background (low-frequen
itself does not.

By studying the behavior of only the maxim
lines (see[18,21]), i.e., how the WTMM coefficients
|Tψ,max[f ](x0, a)| change as a function of scale, t
structure of the singularities (the nonoscillating kin
in a signal can be more efficiently estimated than us
the CWT. Specifically,

(5)
∣∣Ta(x0)

∣∣ ∼ ah(x0), a → 0,

whereTa(x0) is an abbreviation forTψ,max[f ](x0, a).
Eq. (5) implies that at any scalea, the statistical mo-
ments of the singularitiesh(x), considered as ran
dom variables, can be obtained by the statistical
ments of ln|Ta(x)|. The classical WTMM method
[18] actually amounts to computing theD(h) singu-
larity spectrum (Eq.(2)) via the estimate of the scalin
behavior of the statistical moments of the WTMM c
efficients:

(6)Na

〈∣∣Ta(x)
∣∣q 〉 ∼ aτ(q), a → 0,

whereNa ∼ a−Df is the number of maxima lines a
scalea and 〈.〉 denotes the mean overx. A Legen-
dre transform is applied to theτ(q) scaling exponent
to get theD(h) spectrum. The magnitude cumula
analysis[15] consists of noticing that Eq.(6) can be
re-expressed in terms of the logarithm of the mom
generating function (also called the cumulant fu
tion) of ln|Ta| at scalea:

(7)Ψa(q) = ln
〈
eq ln |Ta(x)|〉 =

+∞∑
n=1

Cn(a)
qn

n! ,
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where the cumulantsCn(a) of the WTMM magnitude
can be obtained by taking the derivatives ofΨa(q) at
q = 0. By taking the logarithm of both sides of Eq.(6),
and noticing that ln〈|Ta(x)|q〉 isΨa(q), one obtains the
following polynomial expansion for the scaling exp
nents spectrumτ(q):

τ(q) = −Df +
+∞∑
n=1

(−1)n−1cn

qn

n!
(8)= −c0 + c1q − c2q

2/2! + c3q
3/3! + · · · ,

where thecn’s are defined in terms of the cumulan
Cn(a) as

(9)Cn(a) = (−1)n−1cn lna.

By comparing Eqs.(5) and (6), one can see thatτ(q)

relates to the cumulants ofh. Specifically, the coeffi-
cientscn in the τ(q) expansion of Eq.(8) are the co-
efficients that control the way the probability dens
function (PDF) of the random variableh(x) shrinks
to a delta distributionδ(h − c1), where c1 = 〈h〉,
when a → 0. Indeed, the cumulants of this PDF
to zero ascn/(ln(1/a))n−1 for n � 2 (large deviations
theory; see[22]). It is noted that theD(h) singular-
ity spectrum obtained by Legendre transforming
τ(q) curve provides an alternative geometrical po
of view to this statistical formalism. As defined in E
(2), the D(h) is maximum forh = 〈h〉 (seeFig. 1),
which means that ifDf = 1, only the subset of point
where the function is Hölderh = 〈h〉 will have finite
Lebesgue measure; all the subsets correspondin
the other values ofh betweenhmin andhmax will be
Cantor-sets of zero length. Note that for a log-norm
multifractal process, for whichD(h) is quadratic, all
thecn are zero forn > 2 [14,23]:

(10)D(h) = c0 − (h − c1)
2

2c2
,

with hmin,max= c1 ∓ √
2c2c0.

In addition to the one-point WTMM statistics pr
sented above, it is useful to study the two-point cor
lation function of ln|Ta(x)| [23], i.e.,

C(a,�x) = 〈(
ln

∣∣Ta(x)
∣∣ − 〈

ln
∣∣Ta(x)

∣∣〉)
(11)× (

ln
∣∣Ta(x + �x)

∣∣ − 〈
ln

∣∣Ta(x)
∣∣〉)〉.

By seeing how this two-point correlation changes
a function of�x at scalea, one can determine th
nature of the correlations in the signal. For examp
if C(a,�x) is logarithmic in�x and independent o
scalea provided that�x > a, i.e.,

(12)C(a,�x) ∼ ln�x, �x > a,

then long-range dependence is inferred. Moreo
[23,24]have shown that for random multiplicative ca
cades on wavelet dyadic trees (see also[25])

(13)C(a,�x) ∼ −c2 ln�x,

where the proportionality coefficientc2 is the same a
the proportionality coefficient ofC2(a) versus ln(a),
defined in Eq.(9), i.e.,

(14)C(a,�x = 0) ≡ C2(a) ∼ −c2 lna.

By computingC(a,�x) from Eq.(11) and plotting it
as a function of ln�x, inferences can be made abo
long-range dependence and consistency with a m
plicative cascading process. Note that the presenc
multifractality does not necessarily imply either lon
range dependence or multiplicative cascade[14]. In
making inference from data, it is often helpful to s
perimpose on the same plot the curvesC(a,�x) vs.
ln�x for several�x > a and theC2(a) vs. lna curve
and see whether their slopes agree as a consisten
mate of the intermittency coefficientc2.

Before the application of the above methodolo
to the high-resolution rainfall intensity series is p
sented in the next section, an important additio
technicality is discussed. As has been shown in[18],
low values of the WTMM coefficients can result
divergence and numerical instabilities of Eq.(6), es-
pecially for q < 0, and thus unreliable estimates
the τ(q) andD(h) curves. To alleviate this problem
the previous authors proposed to replace the valu
the wavelet transform modulus at each maximum
the supremum value along the corresponding max
line at scales smaller thana. This method referred to
as “WTMM with sup” has been used in our analy
as divergence problems were encountered for neg
moments. There is an important technicality that
sults when using the “WTMM with sup” method:
cannot identify singularitiesh < 0. This can be un
derstood by noting that if there is any singularity w
h < 0, the modulus of the wavelet transform of the s
nal would not decay but rather increases from larg
small scales. Thus, if one were to replace the mo
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lus maxima withsup along a maxima line, that woul
result in an horizontal maxima line and thus a triv
incorrect value of zero forh. Since we do not know
a priori whether any negative singularities might
present in rainfall, we use the following simple tric
Instead of working with rainfall intensities themselve
we work with the cumulative of the rainfall intensitie
(i.e., the integral of the signal). Thus any singularit
−1 < h < 0 in the original signal will become singu
larities of order 0< h < 1 in the cumulative rainfall al
lowing thus to use the numerically preferred “WTM
with sup” methodology. Once theD(h) curve of the
cumulative rainfall is estimated, it is shifted by o
to the left, i.e.,DI (h) = Dc(h + 1) (the superscripts
I and c refer to intensities and cumulative rain, r
spectively) and inferences are made for rainfall
tensities themselves. The reader is referred to sev
original publications for the wavelet-based multifra
tal analysis formalism ([14,15,17,23]), and especially
the review article of[18] and [24,26] for details and
proofs.
l

3. Analysis of rainfall data

Three rainfall intensity time series over Iowa Ci
sampled every 5 s, have been used in this analysis
[4] for data collection details and also[6] for scaling
and multifractal analysis of these same series). We
refer to these series as Rain 6 (3 May 1990; 6661 s
ples); Rain 5 (1 November 1990; 6689 samples)
Rain 4 (3 October 1990; 6689 samples) to be con
tent with the original nomenclature.Fig. 2shows a plot
of these series.

For the reasons explained in the previous sect
the “WTMM with sup” method has been applied
the cumulative of the rainfall intensities. Wavelets w
varying number of vanishing moments,nψ = 1,2,3
and 4, referred to asg(nψ), have been used. More pr
ciselyg(nψ ) corresponds to thenψ -th derivative of the
Gaussian function. Note thatg(1) andg(2) on the cu-
mulative rainfall are analogous tog(0) (box-counting)
andg(1) (structure function), respectively, on the ra
fall intensities.Fig. 3shows the cumulative of Rain 6
Fig. 2. Time series of rainfall intensity (mm/h) for Rain 6 (a), Rain 5 (b) and Rain 4 (c) (see text for details).
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lative
Fig. 3. (Top) Cumulative rainfall (Rain 6) (in 104 mm/h) versus time (h). (Middle) Time-scale wavelet transform representation of cumu
rainfall with the analyzing waveletg(3). The modulus of the wavelet transform is coded, independently at each scalea, using 64 grey levels
from black (|T

g(3) (t, a)| = 0) to white (maxt |T
g(3) (t, a)|). (Bottom) Wavelet transform skeleton defined by the maxima lines. The scalea is

expressed in sampling time (�t = 5 s) unit.
nd-
ax-

m

ese

-

di-

is
on
te,
its continuous wavelet transform and the correspo
ing wavelet transform skeleton defined by the m
ima lines, when analyzed usingg(3). The cumulants
Cn(a) have been computed, and are shown inFig. 4vs.
lna. (C0(a) = −c0 lna is evaluated as the logarith
of the number of maxima linesNa at each scalea.)
The following observations can be made from th
plots:
• C0(a) vs. lna (Fig. 4(a)) has a slope of approx
imately −1 (i.e., c0 = 1), implying that singularities
are present throughout the signal, i.e., the fractal
mension of the support of singularities isDf = 1.

• C1(a) vs. lna (Fig. 4(b)) shows that usingg(1),
we get a slope of 1. It is important to note that th
slope (corresponding to a box counting method
the rainfall intensities) is an erroneous/trivial estima
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s unit)

Fig. 4. Cumulant analysis of the cumulative rainfall (Rain 6) using the WTMM method with the analyzing waveletsg(1) (◦), g(2) (�), g(3) (∗)
andg(4) (�). Cc

n(a) versus ln(a) for n = 0 (a), 1 (b), 2 (c) and 3 (d). The vertical dashed lines delimit the range of scales (expressed in 5
used for the linear regression estimate ofcc

n.
s
with
te

all
ig-
let

e-
ant
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ales
tion

e

t
ing
sinceC1(a) vs. lna using higher order wavelets, yield
a slope larger than 1. The results become robust
g(3) and g(4), thus establishing that the appropria
wavelet for the cumulative rain isg(3) (and thusg(2)

for rainfall intensities themselves).
• Scaling ofC1(a) (Fig. 4(b)), C2(a) (Fig. 4(c)),

andC3(a) (Fig. 4(d)) vs. lna is observed only within
the scales of lna = 4 to approximately lna = 6.5, cor-
responding to a range of scales of 4 min to 1 hour.

• Fitting straight lines in the plots ofFig. 4 results
in thecn coefficients (n = 0,1,2,3) for all 4 wavelets,
as shown inTable 1.

The conclusion from this analysis is that rainf
fluctuations (defined as the convolution of the or
inal rainfall intensity series with a Gaussian wave
with 2 vanishing moments) exhibit multifractality b
tween the scales of 4–5 min to 1 hour, with cumul
coefficients:cI

0 = cc
0 = 0.98 ± 0.02; cI

1 = cc
1 − 1 =

0.64± 0.03; cI
2 = cc

2 = 0.26± 0.04 andcI
3 = cc

3 ∼ 0
(obtained from the values ofTable 1with g(3) on the
cumulative rainfall, and having movedD(h) to the left
Table 1
Estimates ofcc

n for the cumulative rainfall (Rain 6) obtained fro
cumulant analysis using the WTMM method over the range of sc
4–58 min (the error bars were obtained from the standard devia
of the local slope fluctuations)

cc
0 cc

1 cc
2 cc

3

g(1) 0.94± 0.05 1.11± 0.02 0.15± 0.02 ∼ 0

g(2) 0.95± 0.04 1.54± 0.03 0.28± 0.05 ∼ 0

g(3) 0.98± 0.02 1.64± 0.03 0.26± 0.04 ∼ 0

g(4) 1.00± 0.02 1.69± 0.06 0.24± 0.05 ∼ 0

by 1 along theh axis, which affects only the valu
of c1).

Assuming thatcc
3 = 0 (there is no way to claim tha

cc
3 �= 0 from the small data set under study), and us

the values ofcc
0, c

c
1 and cc

2 obtained from analyzing
the cumulative rainfall series usingg(3), we compute
the spectrum of scaling exponentsτ c(q) using Eq.(8),
and the spectrum of singularitiesD(h) using Eq.(10).
The corresponding curves forτ I (q) = τ c(q) − q and
DI (h) = Dc(h + 1) are shown inFig. 5. On the same
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se
Fig. 5. τ I (q) (= τc(q) − q) spectrum and (b)DI (h) (= Dc(h + 1)) singularity spectrum for rainfall intensity fluctuations of Rain 6. The
spectra were obtained for the cumulative rainfall using cumulant analysis with waveletsg(1) (dashed),g(2) (dotted dashed),g(3) (solid) and
g(4) (dotted). The symbols (◦) correspond to the spectra obtained using the (moment) WTMM method withg(3).
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Table 2
Estimates ofcI

n for rainfall intensity obtained from the cumulan
analysis of the cumulative rainfall data Rain 6, Rain 5, and Ra
using the WTMM method withg(3) over the range of scales 4
58 min

cI
0 cI

1 cI
2 cI

3

Rain 6 0.98± 0.02 0.64± 0.03 0.26± 0.04 ∼ 0

Rain 5 0.97± 0.02 0.55± 0.05 0.38± 0.05 ∼ 0

Rain 4 0.99± 0.02 0.62± 0.03 0.35± 0.15 ∼ 0

plots, we also show theτ I (q) andDI (h) curves ob-
tained when usingg(1), g(2) andg(4) on the cumulative
rain. It is seen again thatg(1) (i.e., box-counting on the
intensities) would give misleading results. For co
parison, we show inFig. 5 (circles) theτ I (q) curve
obtained by a moment analysis (not cumulant an
sis) usingg(3) (i.e.,g(2) on the intensities). The devia
tion of the moments vs. cumulant results forq > 2− 3
might be due to either (a) assumption ofcI

3 = 0 in
the cumulant analysis, while in fact it is not; or (
a lack of statistical convergence of the higher or
moments in the moment analysis owing to small sa
ple size. The same analysis was applied to Rain 5
Rain 4 and the plots ofCc

n(a) vs. ln(a) (not shown
here) displayed linearity over the same range of sca
The estimatedcI

n coefficients for all three series a
shown inTable 2. It is observed that the estimates a
robust:cI  1.0, cI = 0.55− 0.64, cI = 0.26− 0.38
0 1 2
andc3 ∼ 0, although Rain 5 and Rain 4 look slight
more intermittent than Rain 6, a result that might n
be statistically significant.

The two-point WTMM magnitude correlation an
lysis for Rain 6 and Rain 5 is shown inFig. 6 using
the CWT withg(2) directly on rainfall intensities (lef
plot), and the “WTMM with sup” andg(3) on the cu-
mulative rain (right plot). The solid curves are lin
obtained for different scalesa chosen in the scalin
range evidenced inFig. 4. The fact that for�t > a,
all the curves fall on the top of each other and are
most linear is a strong indication that Eq.(12) holds
implying a long-range dependence in rainfall fluc
ations. The slopes of these lines are very close
−c2 up to numerical uncertainty (see solid straig
line plotted forc2 = 0.26 for Rain 6 andc2 = 0.38
for Rain 5 and also compare with theC2(a) vs lna

curve (circles) displayed on the same plots), imp
ing that the long-range dependence found in the
ries is consistent with both Eqs.(13) and (14)and
therefore is likely to be the signature of the existen
of an underlying multiplicative cascade process. N
that, as seen inFig. 6(a) and (b), the statistics o
the CWT coefficients are nearly Gaussian (CI

2(a) =
π2/8) at a scalea ∼ 1 hour that coincides with th
time lag beyond which the WTMM magnitudes b
come decorrelated (C(a,�t)  0) and which evidently
corresponds to the characteristic storm pulse d
tion.
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n is

rly
Fig. 6. Two point magnitude correlation functionsC(a,�t) versus ln(�t) for rainfall intensity using the CWT method withg(2) (left column)
and for cumulative rainfall using WTMM withg(3) (right column). From top to bottom: Rain 6 (a), (a’), Rain 5 (b), (b’). For compariso
shown the behavior of the corresponding second order cumulantCI

2(a) (left column) andCc
2(a) (right column) versus ln(a), plotted as open

circles. Note that for the CWT estimate ofCI
2(a), we have actually plottedCI

2(a) − π2/8 to evidence that the statistics of CWT is nea

Gaussian (CI
2(a) − π2/8 = 0) at the scale of the duration of the storm which also corresponds to the decorrelation length whereC(a,�t) = 0.

In each panel, the solid line corresponds to the estimated slope−c2 of the corresponding second order cumulant (seeTable 2).
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Although no direct comparison can be made
tween our study, and that of[6] whose purpose wa
modeling, we note that both studies agree in in
ring a multiplicative structure of the underlying rai
fall mechanism. While we identify a scaling regim
of rainfall fluctuations (properly defined by removin
nonstationarities) between the scales of 4 min and
hours, Veneziano et al. identify four spectral regim
between the scales of a few seconds to several h
(a segmented spectrum) and deal with nonstation
ties by proposing a stationary model for the cen
part of the storm, and a nonstationary model for
build-up and decay phases. We believe that the dif
ence in the scaling range inferences stems from
wavelet-based methodology proposed here, which
comprehensive framework that allows us to (i) acco
for nonstationarities appropriately, and (ii) analyze
whole signal at once, and therefore more accura
identify the scaling range present in the signal.
4. Conclusions

In this work, a wavelet-based multifractal forma
ism was applied for the first time to high resoluti
temporal rainfall series. The advantages and versa
of this methodology compared to traditional mome
based analysis (e.g., box-counting or structure fu
tion analysis) were discussed. The main findings
be summarized as follows:

• Rainfall intensity fluctuations were found to e
hibit multifractality between the scales of 4–5 min a
1–2 hours, which coincides with the duration of sto
pulses for the events under study. Between the sc
of 5 s and 5 min, a different regime was found wh
needs further investigation. Above the storm pulse
ration, no scaling could be identified with our sm
data sets.
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• Rainfall intensity fluctuations were found to e
hibit a wide spectrum of singularities with the possib
presence of (i)h < 0 implying that there are region
(Cantor set of points) in the rainfall signal at whi
the process is not continuous and (ii)h > 1 implying
that there are regions at which the process is likel
be continuous and once differentiable. Within the lo
normal approximation of theD(h) singularity spec-
trum (Eq. (10)), the results inTable 2yield hmin =
c1 − √

2c2c0  −0.1 andhmax= c1 + √
2c2c0  1.3.

• For rainfall fluctuations, we found thatc1 =
〈h〉  2/3 implying that they are smoother on the a
erage than velocity fluctuations in turbulent flows (
which c1 = 〈h〉  1/3). Also we found that the in
termittency coefficientc2  0.3, which is an order o
magnitude larger than that found for turbulent veloc
fluctuations (c2  0.025 and 0.04 respectively for lon-
gitudinal and transverse velocity increments; see[22])
implying a significantly larger variability of singular
ties at any scale.

• Rainfall fluctuations were found to have a lon
range dependence up to the scale of the storm p
duration, and this dependence was found consis
with that of a multiplicative cascade process. This
interpreted as the possibility of a multiplicative ca
cading mechanism giving rise to storm rainfall whi
however is local, i.e., within storm pulses, and do
not hold from one storm pulse to another.

• The intermittency coefficient ofc2 ≈ 0.3 is of
the same order of magnitude as found for enstro
(c2 ≈ 0.3) and energy dissipation (c2 ≈ 0.2) in fully
developed turbulence (see[22,27]). The interpretation
of this is not clear and needs further investigation.

A word of caution is in order. It is noted that th
record length is very small (≈ 6000 points) and within
each storm approximately 1000 points. This ma
it difficult to get robust estimates of the multifract
properties and is the main reason that we have c
fully used all possible methods (CWT, WTMM an
WTMM with sup, and with wavelets of different o
ders) to get reliable estimates. Although it is enco
aging that the results from all three storms point
the same conclusions (see also a much more elab
analysis of these and an additional storm in[28]), fur-
ther analysis of other storms and longer records sh
be pursued such that (i) the local (within storm-pul
multifractality and cascading mechanism can be m
definitely confirmed, and (ii) the inter storm-pulse s
tistical distribution can be investigated.
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