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Abstract

We revisit the multifractal analysis of high resolution temporal rainfall using the wavelet transform modulus maxima
(WTMM) method. Specifically, we employ a cumulant analysis of the logarithm of the WTMM coefficients to estimate the
scaling exponent spectruttig) and the spectrum of singularitiés(#). We document that rainfall intensity fluctuations exhibit
multifractality from scales of the order of 4-5 minutes up to the storm-pulse duration of 1-2 hours. We also establish long-range
dependence consistent with that of a multiplicative cascade.

0 2005 Elsevier B.V. All rights reserved.
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1. Introduction estimate the scaling exponent functiofg) and, via a
Legendre transform, the singularity spectrirh). In
High resolution temporal rainfall (sampling inter- this Letter, motivated by the most recent developments
val of the order of seconds to minutes) has been stud- in multifractal analysis of turbulence signals (e[@4,
ied by many researchers for the purpose of extracting 15]), we re-examine the scaling structure of high res-
its scaling characteristics (e.f1;-13]; among others).  olution temporal rainfall using wavelet-based estima-
Most of these studies have used spectral analysis ortors (see als¢l6] for application to cloud structure).
traditional multifractal analysis based on computing Specifically, we use a one- and two-point cumulant
higher order moments of the data or their fluctuations analysis of the WTMM magnitude to infer the nature
(e.g., box counting or structure function analysis) to of multifractality and estimate the scaling exponents
of high resolution temporal rainfall.
It is noted that the typical multifractal analysis con-
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definitions) by taking moments of the data (or their in- that the structure function method fails to provide es-
crements) of increasingly higher ordgrplotting log- timate of the fractal dimensio®; = —t(g = 0) of
moment versus log-scale, and estimating the slopes ofthe support of singularities of the signal under study.
these log—log linear curves. This is typically done for All of the above shortcomings of the standard multi-
several moments including fractional moments, e.g., fractal formalism introduce intrinsic insufficiencies in

g = 0.2 up to 5.0 (or higher). The slopes of these unraveling the true multifractal nature of rainfall fluc-
lines are then plotted versus order of moment and a tuations and may lead to misleading inferences. The
nonlinear curve is fitted to that plot to estimate the methodology proposed herein does not suffer from the
t(g) curve. It is easy to see that one has to resort above shortcomings and has been documented in the
to higher order moments to capture the nonlinearity turbulence literature (e.g., s¢®4,15) to yield accu-

of the t(g) curve (note that a linear approximation rate and robust estimates of the multifractal spectra.
would imply the presence of monofractality in the The innovations of the proposed methodology
data). Taking higher order moments of small data sets (which will become more apparent after the reader
(say of the order of a few hundred points) is prob- has read the theory behind the methodology presented

lematic and renders the estimation of th@) curve in the next section; see also the review article of
unreliable. Once the(g) curve is estimated, a Legen- [18]) can be summarized as follows: (1) by using
dre transform is applied to estimate tihg#) curve, a wavelet-based formalism, wavelets of increasingly

i.e., D(h) =miny[gh — t(¢)]. Here itis noted that by ~ higher order can be easily employed to remove non-
using positive order moments only & 0), one hasac-  stationarities in the signal and define via analysis (as
cess to the increasing part of tig#s) spectrum only opposed to a priori specification) what are the rainfall
(recall that derivatives of th® (k) curve are the mo-  “fluctuations” whose multifractal properties we seek
ment ordersy, i.e.,dD(h)/dh = q; seeFig. 1). This to characterize; (2) by using wavelets of increasingly
makes it hard to accurately define the whole spectrum higher order we have access to the whole range of sin-
of singularities and especially the maximum Hélder gularities as this range might not be known a priori (it
exponentimax. It is also noted that taking negative is noted that by employing a structure function analy-
moments ¢ < 0) is not always feasible. For exam- sis, the maximum singularity exponent that can be de-
ple, when working with the increments of the data, tectedis 1 and therefore we might bias the estimates of
i.e., when using the so-called structure function ap- the intermittency coefficient and spectrum of singular-
proach, the probability density function (PDF) of the ities if singularities of Holder exponenit> 1 end up
increments is centered close to zero and taking nega-being present in the signal); (3) by using the wavelet
tive moments creates divergences as values very closeransform modulus maxima (WTMM), i.e., the max-

to zero are raised to negative pow§t3]. Note also ima lines only instead of the whole continuous wavelet
transform (CWT), a more efficient and robust estimate
D(h) of the singularity spectrum can be obtained; (4) by us-

ing a cumulant analysis of the WTMM magnitudes
[15], one can directly estimate from their behavior
as a function of scale, the singularity spectrin);

(5) the coefficients of the polynomial expansion of the
scaling exponent functiom(¢) can be directly com-
puted and do not require taking higher order moments
of the data.

In the next section, a brief review of the wavelet-
based multifractal analysis is presented and references
to the original publications are provided for proofs
) h h and details. SectioB presents the results of applying
the methodology to the analysis of three high reso-
Fig. 1. Generic shape of thB(k) singularity spectrum considered  lution temporal rainfall series, each composed of 5 s
as the Legendre transform ofg). sampling of rainfall intensity for several hours via an

=
~
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optical raingauge. These series have been analyzedreason that if the analyzing wavelet is chosen to have

by others in the literature and provide a benchmark

for comparison of methodologies and associated in-

ny =1, i.e., similar to the structure function in a poor
man’s wavelet sense, no singularities- 1 can ever

ferences. Finally conclusions and interpretations are be detected, biasing thus the estimateDgh) if sin-

given in Sectiort.

2. Methodology overview

Let f(x) be a function whose multifractal charac-
teristics we wish to estimate. The local singularity of
f(x) at pointxg is characterized by the Holder expo-
nenth(xg) defined as

| F(x) = Pa(x — x0)| < Clx — xo|"™. 1)

That is, h(xp) is the largest exponent such that there
exists a polynomialP,(x) of degreen that satisfies
the above condition in the neighborhoodx@f (Note
that 4 (xg) in (1) can be larger than 1, characterizing
thus singularities in the higher order derivatives of the
function, i.e.,n < h < n 4 1 implies that the:th order
derivative of f(x) is singular.) Small values df(xg)
imply stronger singularities. The spectrum of Holder
exponents, or singularity spectrubn(z), is defined as

)

i.e., as the Hausdorff dimensiafy of the set of all
pointsx such that:(x) = h.

The local singularity of f(x) at point xg can
be characterized by the behavior of the wavelet co-
efficients as they change with scalde (see [18]).
Specifically, defining the continuous wavelet trans-
form (CWT) of f(x) using the analyzing wavelet
(e.0.,[19,20), as

D(h) = dH(x, h(x) = h)

1 x—b
TyLf1bra) = — / f(xw(—)dx,
la| a

a>0, beR, ©))
it can be shown that
Tyl f1(x0,a) = 0(a"™), a—0, (4)

provided that the order of the analyzing wavelgt
(i.e., number of vanishing moments) is larger than the
strengthi(xg) of the singularity located atg. It is
noted that to unravel all singularities jf(x), ny must

+oo "
. q

be greater than the exponent of the weakest singular-¥a(q) = |n(eq|n|T“(x)|) = E Cn(a);,
n=1 ’

ities present in the signal, i.e1y > hmax. This is the

gularitiesh > 1 are present in the sign@l7]. Without
knowing a priori what singularities are present in the
signal, the approach we propose and use in this work
is to use analyzing wavelets with, = 1,2, 3, ... and
adopt that wavelet for which robust estimatedf:)

are obtained. It is noted that this particular wavelet
defines also the “fluctuations” of the process whose
multifractal properties we seek to characterize. That s,
the fluctuations superimposed on the underlying low-
frequency component (filtered out via the wavelet)
show scaling, while the background (low-frequency)
itself does not.

By studying the behavior of only the maxima
lines (seq18,21), i.e., how the WTMM coefficients
|Ty.max f1(x0, @)| change as a function of scale, the
structure of the singularities (the nonoscillating kind)
in a signal can be more efficiently estimated than using
the CWT. Specifically,

‘Ta(xo)| ~ gl 40,

®)

whereT, (xo) is an abbreviation foly, max f1(xo, a).

Eqg. (5) implies that at any scale, the statistical mo-
ments of the singularitiek(x), considered as ran-
dom variables, can be obtained by the statistical mo-
ments of INT,(x)|. The classical WTMM method
[18] actually amounts to computing the(h) singu-
larity spectrum (Eq(2)) via the estimate of the scaling
behavior of the statistical moments of the WTMM co-
efficients:
Na<|Ta(x)|q>~aT(q), a— 0, (6)
where N, ~ a—Pr is the number of maxima lines at
scalea and (.) denotes the mean over. A Legen-
dre transform is applied to thgg) scaling exponents
to get theD(h) spectrum. The magnitude cumulant
analysis[15] consists of noticing that Eq6) can be
re-expressed in terms of the logarithm of the moment
generating function (also called the cumulant func-
tion) of In|T,| at scaleu:

@)
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where the cumulants,, (a) of the WTMM magnitude
can be obtained by taking the derivativesiof(g) at

g = 0. By taking the logarithm of both sides of &),
and noticing that INT, (x)|?) is ¥, (q), one obtains the
following polynomial expansion for the scaling expo-
nents spectrum(q):

+o00 qn
—— -1, 1
(@) =-Ds+ Y (-1)" ¢, =
n=1
co+c19q —czqz/Z! ~|—63q3/3! 4 (8)
where thec,'s are defined in terms of the cumulants
Cn(a) as

Cu(a)=(=1)""1¢,Ina. 9)

By comparing Eqs(5) and (6) one can see that(g)
relates to the cumulants af Specifically, the coeffi-
cientsc, in the t(g) expansion of Eq(8) are the co-
efficients that control the way the probability density
function (PDF) of the random variable(x) shrinks

to a delta distributions(z — c¢1), where ¢1 = (h),
whena — 0. Indeed, the cumulants of this PDF go
to zero as:,/(In(1/a))" 1 for n > 2 (large deviations
theory; seg22]). It is noted that theD (k) singular-

ity spectrum obtained by Legendre transforming the
7(g) curve provides an alternative geometrical point
of view to this statistical formalism. As defined in Eq.
(2), the D(h) is maximum forh = (h) (seeFig. 1),
which means that iD ; = 1, only the subset of points
where the function is Holdek = (k) will have finite
Lebesgue measure; all the subsets corresponding t
the other values of betweensimin and imax Will be
Cantor-sets of zero length. Note that for a log-normal
multifractal process, for whiclb (k) is quadratic, all
thec, are zero fom > 2 [14,23]

(h —c1)?
2¢2
W|th hmin’ max = C1 F «/ 2C2C0.
In addition to the one-point WTMM statistics pre-

sented above, it is useful to study the two-point corre-
lation function of In T, (x)| [23], i.e.,

D(h)=co— (10)

3

Cla, Ax) =((In| 7. (x)| = (In| T, (x)]))
x (In|T,(x + Ax)| — (In|T,(x)))). (11)

By seeing how this two-point correlation changes as
a function of Ax at scalea, one can determine the

[DTD5] P.4 (1-11)
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nature of the correlations in the signal. For example,
if C(a, Ax) is logarithmic inAx and independent of
scalea provided thatAx > 4, i.e.,

C(a, Ax) ~InAx, Ax>a, (12)

then long-range dependence is inferred. Moreover,
[23,24]1have shown that for random multiplicative cas-
cades on wavelet dyadic trees (see §&j)

C(a, Ax) ~ —c2In Ax, (13)

where the proportionality coefficienp is the same as
the proportionality coefficient o€2(a) versus Ia),
defined in Eq(9), i.e.,

Cla, Ax=0)=Cz(a) ~ —c2Ina. (14)

By computingC(a, Ax) from Eq.(11) and plotting it

as a function of Im\x, inferences can be made about
long-range dependence and consistency with a multi-
plicative cascading process. Note that the presence of
multifractality does not necessarily imply either long-
range dependence or multiplicative casc@b4]. In
making inference from data, it is often helpful to su-
perimpose on the same plot the curéda, Ax) vs.

In Ax for severalAx > a and theC2(a) vs. Ina curve

and see whether their slopes agree as a consistent esti-
mate of the intermittency coefficiens.

Before the application of the above methodology
to the high-resolution rainfall intensity series is pre-
sented in the next section, an important additional

giechnicality is discussed. As has been showfiLBj,
low values of the WTMM coefficients can result in
divergence and numerical instabilities of €§), es-
pecially for ¢ < 0, and thus unreliable estimates of
the t(¢g) and D(h) curves. To alleviate this problem,
the previous authors proposed to replace the value of
the wavelet transform modulus at each maximum by
the supremum value along the corresponding maxima
line at scales smaller than This method referred to
as “WTMM with sup” has been used in our analysis
as divergence problems were encountered for negative
moments. There is an important technicality that re-
sults when using the “WTMM with sup” method: it
cannot identify singularitie¢ < 0. This can be un-
derstood by noting that if there is any singularity with
h < 0, the modulus of the wavelet transform of the sig-
nal would not decay but rather increases from large to
small scales. Thus, if one were to replace the modu-
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lus maxima withsup along a maxima line, that would
result in an horizontal maxima line and thus a trivial
incorrect value of zero fok. Since we do not know
a priori whether any negative singularities might be
present in rainfall, we use the following simple trick.
Instead of working with rainfall intensities themselves,
we work with the cumulative of the rainfall intensities
(i.e., the integral of the signal). Thus any singularities
—1 < h < 0in the original signal will become singu-
larities of order O< & < 1 in the cumulative rainfall al-
lowing thus to use the numerically preferred “WTMM
with sup” methodology. Once th® (k) curve of the
cumulative rainfall is estimated, it is shifted by one
to the left, i.e.,D! (h) = D(h + 1) (the superscripts

I and ¢ refer to intensities and cumulative rain, re-
spectively) and inferences are made for rainfall in-

3. Analysisof rainfall data

Three rainfall intensity time series over lowa City,
sampled every 5 s, have been used in this analysis (see
[4] for data collection details and al$6] for scaling
and multifractal analysis of these same series). We will
refer to these series as Rain 6 (3 May 1990; 6661 sam-
ples); Rain 5 (1 November 1990; 6689 samples) and
Rain 4 (3 October 1990; 6689 samples) to be consis-
tent with the original nomenclaturgig. 2shows a plot
of these series.

For the reasons explained in the previous section,
the “WTMM with sup” method has been applied to
the cumulative of the rainfall intensities. Wavelets with
varying number of vanishing moments, = 1,2, 3
and 4, referred to ag”¥), have been used. More pre-

tensities themselves. The reader is referred to severalcisely g™+ corresponds to they -th derivative of the

original publications for the wavelet-based multifrac-
tal analysis formalism[{4,15,17,23), and especially
the review article of18] and[24,26] for details and
proofs.

Gaussian function. Note thgt? andg® on the cu-
mulative rainfall are analogous 8% (box-counting)
andg@ (structure function), respectively, on the rain-
fall intensities.Fig. 3shows the cumulative of Rain 6,

20 T T T T

I (mm/h)

T T T T T

I (mm/h)

0 1 2 3 4

5 6 7 8 9

Time (in hr)

Fig. 2. Time series of rainfall intensity (mfh) for Rain 6 (a), Rain 5 (b) and Rain 4 (c) (see text for details).
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Fig. 3. (Top) Cumulative rainfall (Rain 6) (in fOnm/h) versus time (h). (Middle) Time-scale wavelet transform representation of cumulative
rainfall with the analyzing wavelet® . The modulus of the wavelet transform is coded, independently at eachusealing 64 grey levels
from black ﬂTg(g) (t,a)| = 0) to white (max |Tg(3) (t,a)]). (Bottom) Wavelet transform skeleton defined by the maxima lines. The gdale
expressed in sampling tim&¢ = 5 s) unit.

its continuous wavelet transform and the correspond- e Co(a) vs. Ina (Fig. 4(a)) has a slope of approx-
ing wavelet transform skeleton defined by the max- imately —1 (i.e., co = 1), implying that singularities
ima lines, when analyzed using®. The cumulants  are present throughout the signal, i.e., the fractal di-

C,(a) have been computed, and are showhim 4vs. mension of the support of singularitiesfs: = 1.
Ina. (Co(a) = —colna is evaluated as the logarithm e C1(a) vs. Ina (Fig. 4(b)) shows that using™®,
of the number of maxima lined/, at each scale.) we get a slope of 1. It is important to note that this

The following observations can be made from these slope (corresponding to a box counting method on
plots: the rainfall intensities) is an erroneous/trivial estimate,
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Fig. 4. Cumulant analysis of the cumulative rainfall (Rain 6) using the WTMM method with the analyzing wayélets), @ (), ¢@ (x)
andg® (v). Cy.(a) versus Ia) for n =0 (a), 1 (b), 2 (c) and 3 (d). The vertical dashed lines delimit the range of scales (expressed in 5 s unit)

used for the linear regression estimatepf

sinceC1(a) vs. Ina using higher order wavelets, yields

Table 1

a slope larger than 1. The results become robust with Estimates of; for the cumulative rainfall (Rain 6) obtained from

¢® and g™, thus establishing that the appropriate
wavelet for the cumulative rain ig® (and thusg®
for rainfall intensities themselves).

e Scaling ofC1(a) (Fig. 4b)), C2(a) (Fig. 4(c)),
andCs(a) (Fig. 4(d)) vs. Ina is observed only within
the scales of la = 4 to approximately la = 6.5, cor-
responding to a range of scales of 4 min to 1 hour.

e Fitting straight lines in the plots dfig. 4results
in thec, coefficients ¢ =0, 1, 2, 3) for all 4 wavelets,
as shown ifrable 1

The conclusion from this analysis is that rainfall
fluctuations (defined as the convolution of the orig-
inal rainfall intensity series with a Gaussian wavelet
with 2 vanishing moments) exhibit multifractality be-
tween the scales of 4-5 min to 1 hour, with cumulant
coefficients:c} = ¢§ = 0.98 £ 0.02; ¢! =¢{ — 1=
0.64+ 0.03; ¢} = ¢§ =0.26+0.04 andc} = c§~ 0
(obtained from the values diable 1with ¢® on the
cumulative rainfall, and having movedd(h) to the left

cumulant analysis using the WTMM method over the range of scales
4-58 min (the error bars were obtained from the standard deviation
of the local slope fluctuations)

c8 § 5 cg
@ 0.94+0.05 111+ 0.02 015+ 0.02 ~0
¢@ 0.95+ 0.04 154+ 0.03 028+ 0.05 ~0
g® 0.98+0.02 164+ 0.03 026+ 0.04 ~0
g@ 1.00+ 0.02 169+ 0.06 024+ 0.05 ~0

by 1 along theh axis, which affects only the value
of ¢1).

Assuming that$ = O (there is no way to claim that
c5 # 0 from the small data set under study), and using
the values ofcg, ¢f andc5 obtained from analyzing
the cumulative rainfall series using®, we compute
the spectrum of scaling exponentgq) using Eq(8),
and the spectrum of singularitiés(#) using Eq.(10).
The corresponding curves fef (¢) = t¢(q) — ¢ and
D! (h) = D¢(h + 1) are shown irFig. 5. On the same
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(b)

-0.5 0

Fig. 5.7/ (¢) (= t°(g) — q) spectrum and (bP! (1) (= D (h + 1)) singularity spectrum for rainfall intensity fluctuations of Rain 6. These
spectra were obtained for the cumulative rainfall using cumulant analysis with way&tetslashed)g@ (dotted dashedg® (solid) and
g(4) (dotted). The symbols{ correspond to the spectra obtained using the (moment) WTMM methocg\(/@?th

Table 2

Estimates ofc} for rainfall intensity obtained from the cumulant
analysis of the cumulative rainfall data Rain 6, Rain 5, and Rain 4
using the WTMM method withg® over the range of scales 4—
58 min

ch ol b l
Rain 6 098+ 0.02 064+0.03 026+ 0.04 ~0
Rain 5 097+ 0.02 0554+ 0.05 038+ 0.05 ~0
Rain 4 099+ 0.02 062+ 0.03 035+ 0.15 ~0

plots, we also show the! (¢) and D! (k) curves ob-
tained when using®, ¢@ andg® on the cumulative
rain. It is seen again that? (i.e., box-counting on the
intensities) would give misleading results. For com-
parison, we show irFig. 5 (circles) thet!(g) curve
obtained by a moment analysis (not cumulant analy-
sis) usingg® (i.e., ¢ on the intensities). The devia-
tion of the moments vs. cumulant results §os 2 — 3
might be due to either (a) assumption Qf: 0in

the cumulant analysis, while in fact it is not; or (b)
a lack of statistical convergence of the higher order
moments in the moment analysis owing to small sam-

andcs ~ 0, although Rain 5 and Rain 4 look slightly
more intermittent than Rain 6, a result that might not
be statistically significant.

The two-point WTMM magnitude correlation ana-
lysis for Rain 6 and Rain 5 is shown Fig. 6 using
the CWT withg@ directly on rainfall intensities (left
plot), and the “WTMM with sup” anc® on the cu-
mulative rain (right plot). The solid curves are lines
obtained for different scaleg chosen in the scaling
range evidenced ifrig. 4. The fact that forAt > a,
all the curves fall on the top of each other and are al-
most linear is a strong indication that §§-2) holds
implying a long-range dependence in rainfall fluctu-
ations. The slopes of these lines are very close to
—cp up to numerical uncertainty (see solid straight
line plotted forc, = 0.26 for Rain 6 andc,; = 0.38
for Rain 5 and also compare with th&(a) vs Ina
curve (circles) displayed on the same plots), imply-
ing that the long-range dependence found in the se-
ries is consistent with both Egq$13) and (14)and
therefore is likely to be the signature of the existence
of an underlying multiplicative cascade process. Note
that, as seen irFig. 6@) and (b), the statistics of

ple size. The same analysis was applied to Rain 5 andthe CWT coefficients are nearly Gaussiar{ (a) =

Rain 4 and the plots ofS(a) vs. In(a) (not shown

72/8) at a scalex ~ 1 hour that coincides with the

here) displayed linearity over the same range of scales.time lag beyond which the WTMM magnitudes be-

The estimated/ coefficients for all three series are
shown inTable 2 It is observed that the estimates are
robust:c) ~ 1.0, ¢/ = 0.55— 0.64, ¢} = 0.26 — 0.38

come decorrelated’(a, Ar) >~ 0) and which evidently
corresponds to the characteristic storm pulse dura-
tion.
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° @] | (@) ]

Fig. 6. Two point magnitude correlation functiofi:, Ar) versus IriAr) for rainfall intensity using the CWT method wigf2 (left column)
and for cumulative rainfall using WTMM Witlg(3) (right column). From top to bottom: Rain 6 (a), (&), Rain 5 (b), (b’). For comparison is
shown the behavior of the corresponding second order cumG@(m) (left column) andcg(a) (right column) versus lt), plotted as open

circles. Note that for the CWT estimate ()‘g(a), we have actually plottedfé (a) — 7'[2/8 to evidence that the statistics of CWT is nearly

Gaussian((‘é (a) — 7r2/8 = 0) at the scale of the duration of the storm which also corresponds to the decorrelation lengtlf (uheve = 0.
In each panel, the solid line corresponds to the estimated slop®f the corresponding second order cumulant (Gge 2.

Although no direct comparison can be made be- 4. Conclusions
tween our study, and that ¢6] whose purpose was
modeling, we note that both studies agree in infer-
ring a multiplicative structure of the underlying rain- In this work, a wavelet-based multifractal formal-
fall mechanism. While we identify a scaling regime ism was applied for the first time to high resolution
of rainfall fluctuations (properly defined by removing temporal rainfall series. The advantages and versatility
nonstationarities) between the scales of 4 min and 1-2 of this methodology compared to traditional moment-
hours, Veneziano et al. identify four spectral regimes based analysis (e.g., box-counting or structure func-
between the scales of a few seconds to several hourstion analysis) were discussed. The main findings can
(a segmented spectrum) and deal with nonstationari- be summarized as follows:
ties by proposing a stationary model for the central
part of the storm, and a nonstationary model for the e Rainfall intensity fluctuations were found to ex-
build-up and decay phases. We believe that the differ- hibit multifractality between the scales of 4-5 min and
ence in the scaling range inferences stems from the 1-2 hours, which coincides with the duration of storm
wavelet-based methodology proposed here, which is apulses for the events under study. Between the scales
comprehensive framework that allows us to (i) account of 5 s and 5 min, a different regime was found which
for nonstationarities appropriately, and (i) analyze the needs further investigation. Above the storm pulse du-
whole signal at once, and therefore more accurately ration, no scaling could be identified with our small
identify the scaling range present in the signal. data sets.
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o Rainfall intensity fluctuations were found to ex-
hibit a wide spectrum of singularities with the possible
presence of (i < 0 implying that there are regions
(Cantor set of points) in the rainfall signal at which
the process is not continuous and (ii}> 1 implying
that there are regions at which the process is likely to
be continuous and once differentiable. Within the log-
normal approximation of théd (1) singularity spec-
trum (Eq. (10)), the results inTable 2yield hmin =
c1 — +/2c2cg > —0.1 andhmax = c1 + /2c2co >~ 1.3.

e For rainfall fluctuations, we found that; =
(h) >~ 2/3 implying that they are smoother on the av-
erage than velocity fluctuations in turbulent flows (for
which ¢1 = (h) ~ 1/3). Also we found that the in-
termittency coefficient; ~ 0.3, which is an order of
magnitude larger than that found for turbulent velocity
fluctuations ¢> ~ 0.025 and 004 respectively for lon-
gitudinal and transverse velocity increments; [223)
implying a significantly larger variability of singulari-
ties at any scale.

o Rainfall fluctuations were found to have a long-

[DTD5] P.10 (1-11)
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definitely confirmed, and (ii) the inter storm-pulse sta-
tistical distribution can be investigated.
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