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THE STATE OF PLAY IN SPACE TODAY
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“‘“ Understanding Earth from Space
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Water Cycle Missions
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Water and Energy Cycle Missions

EOS-Aura
- Atmospheric humidity
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- Snow and ice
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Exploding Volume of Climate Data from Space

Model

Satellite/Radar
N |n Situ/Other

m
]_
o
o
<
—
)
@
]
==
0
(Q
e
@
(a8

Overpeck et al, 2010 , 2025 2030
Science, 2011




3 Themes @ UCI

1. Precipitation estimation from space

2. Climate dynamics for prediction




1. PRECIPITATION
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Water cycle dynamics at global to regional scales
Monitoring extremes (hurricanes, tropical storms)
Improving weather and climate models



From TRMM to GPM

Covering 35S to 35N

Microwave Imager (TMI)

-- 9 channels

-- frequencies 10.7-t0-85.5 GHz

-- swath width 878 km

Precipitation radar (PR)

-- single-frequency Ku band (13 GHz)
-- swath width 247 km

Covering 68S to 68N

GPM Microwave Imager (GMI)

-- 13 dual-polarized channels

-- frequencies 10.65-183.3 GHz

-- swath width 885 km

Dual Polarization radar (DPR)

-- dual-frequency Ku & Ka (13 and 35 GHz)
-- swath width 120, 245 km
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GPM Core Satellite

GPM Microwave Imager
(10-183 GHz)

Dual-Frequent y

Percipitation Radar (DPR):
Ku-band (13.6 GHz

KaPR: Ka-band (35.5 GHz)

Range
Resolution:;
250m or
S00m

2

Flight Direction
407 km Altitude
65 deg Inclination




GPM Constellation

GPM Constellation Status
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Passive Microwave Retrieval:
An underdetermined Inverse problem

The direct problem:

Surface
emissivity

TB = f(RE
fRoE

Hydrometeors
profile

Observed TBs
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(physical) radiative transfer models Y
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The inverse problem: i

L]

R. =(2[TB.Ey)

Underdetermined
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Passive Microwave Retrieval: an Inverse Problem

Learn patterns from data for retrieval

Spectral BT
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ShARP: Locally linear embedding for rainfall retrieval

* Inversion Algorithm based on Regularization:
— Concept of the locally linear embedding (supervised manifold learning):

radiometer c radar ”
~ o N, X
B = [bﬂ...‘b]\.{} Emncxj\'f : R = [r1|""rf\/f] SRUL
b, r, ® raining
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— Search for the K-nearest neighbors to detect raining signatures

Bs = [by]...[bg] € RmexX Rs = [r1]...|rx] € R *K

— Estimate the representation coefficients and thus the rainfall profile

—_ VK S K
Yi = Ek:1ckbk + Vi > Xi = Ek:1ckrk

Foufoula-Georgiou et al., Survey in Geophysics, 2015; Ebtehaj, Foufoula-Georgiou, Lerman, Bras, GRL, 2015 15
Ebtehaj, Bras, Foufoula-Georgiou, IEES, 2015; & J. Hydrometeorology, 2016; Takbiri, Ebtehaj, Foufoula-Georgiou, HESS, 2017



ShARP: Locally linear embedding for rainfall retrieval

— Detection step:

» K-nearest neighborhood search + a probabilistic voting rule for rain/no-rain

— Estimation Step:

* Estimation of the representation coefficients

2
minimize [W'/? (y = Bso)||_+ A [lel, + s el

subject to ¢ =0, 1'ec =1, b -norm: |lell = X ¢

)\'l:)\2>0
b, /
Bs = [bl"bz—llbz’ ’b]—llb]"bK] c %HCXK

L1-L2 regularization for stability and reduced estimation error
* Rainfall estimates

x = Rsc
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Yet, lacking performance in several places of the world

Effective Resolution (ER) of NASA’s GPROF v7 (GMI vs KuPR)
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* Local values computed from all observations in 3°x3° boxes.
* March 2014 to February 2017: 16,500 GPM orbits

Guilloteau, Foufoula-Georgiou, Kummerow, J. Hydrometeorology, 2017.



New Direction: Retrieve patterns (not a pixel at a time)

Learn from the spatial structure in the TB space

1) Sensor Geometry: with

11 GHz different channels responding to
different altitude levels, the
multi-spectral signature
characterizing a given vertical
column may be split across
several pixels.

2) Specific spatial patterns of
TBs are the signatures of
specific atmospheric features

QU: HOW TO IDENTIFY THE NEIGHBOROOD AND HOW TO LEARN FROM IT?
It becomes a very high dimensional problem! Need to learn features!




New Direction: Retrieve patterns not a pixel at a time

Y (kmj
o [ fn |

Learn from the spatial structure in the TB space

89 VTB

.14

1) Sensor Geometry: with
different channels responding to
different altitude levels, the
multi-spectral signature
characterizing a given vertical
column may be split across
several pixels.

S500

400

SO0
TE 88 V (K}

100

2) Specific spatial patterns of

R TBs are the signatures of
¥ fkm . .
H specific atmospheric features
Lower 37V => NO! Itisanice
Lower emission signal => Scattering signal=>
Lower precipitation? Very active convective

Cell
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Bridging the gap: weather and climate

NAS (2016) Next Generation Earth System Prediction: Strategies
for Subseasonal to Seasonal Forecasts

NCEP Operational Forecast Skill
36 and 72 Hour Forecasts @ 500 MB over North America 36-hr and 72-hr ahead

IR0 (=St et weather forecasts are
getting better and better...
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Bridging the gap: weather and climate

NAS (2016) Next Generation Earth System Prediction: Strategies
for Subseasonal to Seasonal Forecasts

NCEP Operational Forecast Skill

36 and 72 Hour Forecasts @ 500 MB over North America
[100 * (1-S1/70) Method]

—e—36 Hour Forecast ——72 Hour Forecast

36-hr and 72-hr ahead
weather forecasts are
getting better and better...

o’

el

Mariotti et al (2018) Climate and Atmospheric
Science, doi:10.1038/s41612-018-0014-z

The $25 F?rediction Gap

N 15 Years ' H
Higher : ; .
- WEATHER EVENTS

1BM 1BM
IBM IBM 1BM
701 7% 7090 7094 200iR0

Prediction skill

0.0

Our prediction skill on
subseasonal (week timescales) &

SEASOMAL OUTLOOKS
ELH m Oscillation
ecipitatios

to seasonal (S2S) timescales is -
still very limited

1 month 3 months 12 months

Prediction lead time

months

Adapted from: iri



Combining physics and statistics

» Climate models show limited skill in predicting seasonal
precipitation months ahead

« Best approach to predict is combining our physical
understanding with statistical tools:

Large-scale climate modes

Regional hydroclimat / (e.g. ENSO see below)
egional hydroclimate _
(e.g. precipitation, —Y =f(X9+e¢

temperature in California)

The Great El Nino in 2016

Jan 2015

El Nino impact on global weather

EL Nino

By Sea temperature e
- wusually high rainfa higher than
at get unusually high rainfall itz -2 -1 0 1 2

ith abnormally warm weather



Learning from Big Data
« What are the best sources of predictability B Nifio 3.4 SST indices in
for a specific region? Are they changing? ' Nligg 4 tropical Pacific
. :I P .‘III

« ML and Network analysis can extract
much relevant information from the data
to improve prediction
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Example: Precipitation in southwestern US Starting year of the 30-yr window

 Dry and variable hydroclimate * New climate mode discovered,
different than ENSO

annual
precipitation
(mm/yr)
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(Mamalakis et al., 2018, Nature Communications)



Learning from Big Data

(Mamalakis et al., 2018, Nature Communications)

« This new mechanism has been more dominant in o ® Fall prediction of winter Precipitation in SWUS
modulating SWUS precipitation in the last 3 to 4 07 =§ -
decades: o | B Niao3 g R

0.5 %

[
** /

0.4 7y

Correlation

v Vector X may not include important/new
modes if based only on our prior knowledge

0.1
1950 1955 1960 1965 1970 1975 1980 1985 1990

v" Function £ is not constant through time Slaingryees of gy

ok o b) In‘dices and S H-L/Sr
* In our new project (funded by ), we use ng A

machine learning to address this problem:

Ely:] = (x¢, B) linear model 3 Eme

20
-40 £ )

 Where the relative contribution of each feature in X W w w @ ow
. . ongitude
is represented by 5 and is calculated by
minimizing:

3 = arg mi
B g mi

Sparsity

g

Fit observations @ TRIPODS+CLIMATE program (NSF grant DMS-1839336)



Learning from Big Data
Ely:] = (x:, B) linear model

Spatial dependence

\/

-~

= arqg mi
5 g mi

Sparsity
Fit observations

v Preliminary results are promising. We can explain more that 40% of
precipitation variability in the out-of-sample period.

v' The patterns of £ can be used to verify and reveal new mechanisms
in the large-scale climate system

v' Such approaches can also be used for climate model diagnostics. Do

climate models capture the observed interrelations and how are these
projected to change under climate change?

TRIPODS+CLIMATE program (NSF grant DMS-1839336)



3. LANDSCAPES
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Remotely-sensed global imagery is paving the way for a Global Geomorphology
The two most critical problems:

Automatic extraction of dynamic objects Automatic extraction of critical information

Robust extraction of rivers from multispectral imagery is a Following object identification (mask generation), robust
very nuanced problem that must consider: water level at algorithms must be capable of objectively distilling relevant
time of image, exposed point bars, mixed pixels at metrics and insights without excessive manual intervention.

boundaries, and clouds, shadows, snow cover, etc.



Ucayali River, Peru






Two critical problems

Automatic extraction of critical information

Automatic extraction of dynamic objects

10km

Landsat

G B 4

. 1984-2015

NMN

Robust extraction of rivers from multispectral must consider
water level at time of image, exposed point bars, mixed
pixels at boundaries, and clouds, shadows, snow cover, etc

Following object identification (mask generation), robust
algorithms must be capable of objectively distilling relevant
metrics and insights without excessive manual intervention.



Create
channel masks

Download Classify
Landsat image
imagery pixels

Select
N images

Classified image bank
for single erTI’
{lowe stage only)

Stack
N images

Composite

N
Bankfull Masks

Single-thread H%d;gggtcggy

DSu=1.19AL
=075

Can predict cutoffs!

1985

J Schwenk, A Khandelwal, M Fratkin, V Kumar, E Foufoula-Georgiou. (2017) Earth and Space Science
J Schwenk, E Foufoula-Georgiou. (2017) Geophysical Research Letters



Tools for large-scale mask analysis (river networks)

A

OHNV2 flow

a Python toolbox for IR | directionality

analysis of deltaic e (4
and braided river VAN 4 upstream
channel networks ERRY, Y S

Coming soon to a Conda \ ‘ 1 W

Repository near you... X ) Y\ downstream
J Schwenk, A Tejedor, A X O
Piliourais, J Rowland, E .
Foufoula-Georgiou. (2018) In ’

preparation.

Wurmnber of Alternative Paths Leakage Index

ux Sharing Index pologic Mutual Infermation Jynamic Mutual Infermation
Flux Sk g Ind Topalogic Mutual Infermatior Dyna Mutual Information
- s T
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morphological properties and topologic metrics



Arctic Deltas (ADs)

The Arctic: North of 66° 33°N

— Climate change affects poles with
greater  intensity i.e.  Polar
Amplification (Serreze et al. 2009)

— ADs have on the order of 91 39
Pg-Carbon (Schuur et al., 2015)

— Lakes and ponds are significant

sources of methane (i.e. further
warming) (Wik, 2016)

— ADs are uniquely characterized by
strong spring flooding, permafrost
presence, and lake abundance

(Walker, 1999)

33

Mackenzie Delta, Source: Sam B Cornish



Changes in arctic deltas under climate change

Can we infer subsurface hydrologic connectivity from
the observed (surface) topology and connectivity of
lakes and channels in ADs?

" '  RivGraph for
" CN extraction

Approach:

We interrogate lake shrinkage rates and show that distance
from the delta channel network controls lake shrinkage and
thus subsurface connectivity.

P(Water, .. =2 LandMy)

Legend
Yukon NED (m) 2008




INTELLIGENCE 2025
to improve life on Earth

FINDING THE SIGNAL
IN THE NOISE




efi@uci.edu
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